Областное государственное бюджетное профессиональное образовательное учреждение «Димитровградский технический колледж»

Детский технопарк «Кванториум»

Рассмотрена на заседании педагогического совета Протокол № 1 от 31.08.2021г

Дополнительная общеобразовательная общеразвивающая программа технической направленности

«Основы хайтек»

Хайтек - Д

Срок реализации программы – 72 часа

Возраст обучающихся первого года обучения: 12-17 лет

Уровень программы (стартовый)

Автор-разработчик: педагог дополнительного образования П.С.Бондаренко

г. Димитровград, 2021 г.

Областное государственное бюджетное профессиональное образовательное учреждение «Димитровградский технический колледж»

Детский технопарк «Кванториум»

Рассмотрена на заседании	УТВЕРЖДАЮ
педагогического совета	Директор
Протокол №	
от	Приказ № от

Дополнительная общеобразовательная общеразвивающая программа технической направленности

«Основы хайтек»

Хайтек - Д

Срок реализации программы – 72 часа

Возраст обучающихся первого года обучения: 12-16 лет

Уровень программы (стартовый)

Автор-разработчик: педагог дополнительного образования П.С.Бондаренко

г. Димитровград, 2021 г.

Содержание дополнительной общеобразовательной общеразвивающей программы

1. Комплекс основных характеристик программы

1.1. Пояснительная записка	стр. 3
1.2. Цель и задачи программы	стр. 9
1.3. Планируемые результаты освоения программы	стр. 11
1.4. Содержание программы	стр. 13
2. Комплекс организационно-педагогических условий.	
2.1. Календарно-учебный график	стр. 17
2.2. Условия реализации программы	стр. 19
2.3. Формы аттестации и критерии результативности обучения	стр. 27
2.4.Методические материалы	стр. 29
Список литературы	стр. 29

1. Комплекс основных характеристик программы

1.1.Пояснительная записка.

Современный период развития общества характеризуется масштабными изменениями в окружающем мире, влекущими за собой пересмотр социальных требований к образованию, предполагающими его ориентацию не только на усвоение обучающимся определенной суммы знаний, но и на развитие его личности, а также овладение метапредметными компетенциями. Большими возможностями в развитии личностных ресурсов школьников обладает подготовка в области высоких технологий.

Водный модуль по направлению «Хайтек-квантум» относится к программам технической направленности и предусматривает развитие творческих способностей детей, формирование начальных технических ЗУНов, а также овладение «soft» и «hard» компетенциями.

Дополнительная образовательная программа «Основы хайтек» предназначена для работы в учреждениях дополнительного образования с обучающимися образовательных учреждений, желающими овладеть основами моделирования объектов из области хайтек производства. Основными задачами в работе является ориентация на максимальную самореализацию личности, личностное и профессиональное самоопределение, социализацию и адаптацию детей в обществе. На всех этапах реализации программы основной целью является создание интереса у детей техническому виду деятельности, формирование потребности в приобретении специальных знаний и навыков для подготовки к осознанному выбору профессии.

Дополнительная общеразвивающая программа разработана на основе специализированной методической литературы и профессионального опыта педагога. Программа реализуется с применением высокотехнологичного оборудования.

Нормативно-правовое обеспечение программы.

Программа разработана в соответствии с документами:

- 1. Федеральный закон от 29 декабря 2012 года № 273-ФЗ «Об образовании в Российской Федерации» (ст. 2, ст. 15, ст.16, ст.17, ст.75, ст. 79);
- 2. Проект Концепции развития дополнительного образования детей до 2030 года:
- 3. Приказ Минпросвещения РФ от 09.11.2018 года № 196 «Об утверждении Порядка организации и осуществления образовательной деятельности по дополнительным общеобразовательным программам»;
- 4. Приказ от 30 сентября 2020 г. N 533 «О внесении изменений в порядок организации и осуществления образовательной деятельности по дополнительным общеобразовательным программам, утвержденный приказом Министерства просвещения Российской Федерации от 9 ноября 2018 г. № 196»;

- 5. Методические рекомендации по проектированию дополнительных общеразвивающих программ № 09-3242 от 18.11.2015 года;
- 6. СП 2.4.3648-20 Санитарно-эпидемиологические требования к организациям воспитания и обучения, отдыха и оздоровления детей и молодежи;
- 7. Письмо Минобрнауки России от 28.08.2015 года № АК 2563/05 «О методических рекомендациях» вместе с (вместе с Методическими рекомендациями по организации образовательной деятельности с использованием сетевых форм реализации образовательных программ);
- 8. Приказ Министерства науки и высшего образования Российской Федерации и Министерства просвещения Российской Федерации от 05.08.2020 г. N 882/391 "Об организации и осуществлении образовательной деятельности при сетевой форме реализации образовательных программ»;
- 9. Приказ Министерства образования и науки РФ от 23.08.2017 года № 816 «Порядок применения организациями, осуществляющих образовательную деятельность электронного обучения, дистанционных образовательных технологий при реализации образовательных программ»
- 10. «Методические рекомендации от 20 марта 2020 г. по реализации образовательных программ начального общего, основного общего, среднего общего образования, образовательных программ среднего профессионального образования и дополнительных общеобразовательных программ с применением электронного обучения и дистанционных образовательных технологий»;
 - 11. Устав ОГБПОУ «ДТК»;
 - 12. Положение о детском технопарке «Кванториум».

Уровень освоения программы: стартовый

Направленность (профиль) программы: техническая

Актуальность программы

Актуальность программы обусловлена социальным заказом общества на технически грамотных специалистов в области высоких технологий, максимальной эффективностью развития технических навыков со школьного возраста; передачей сложного технического материала в простой доступной форме; реализацией проектной деятельности школьниками на базе современного оборудования; реализацией личностных потребностей и жизненных планов, а также повышенным интересом детей школьного возраста к высоким технологиям.

Использование современных педагогических технологий, методов и приемов; различных техник и способов работы; современного оборудования, позволяющего исследовать, создавать и моделировать различные объекты и системы из области хайтек производства обеспечивает новизну программы.

Информационные технологии — являются одним из приоритетных направлений развития в Ульяновской области. Обучение по программе «Основы хайтек» предоставляет обучающимся возможности профессиональной ориентации и первых профессиональных проб технического образования. Практические работы, адаптированные к современному уровню развития науки и техники, помогают раскрыть и развить творческий потенциал детей, а также продемонстрировать им свои способности к научной и исследовательской деятельностям.

Программа отвечает потребностям детей в техническом творчестве, ориентирована на решение личностных проблем ребенка, и соответствует социальному заказу общества в подготовке технически грамотных личностей владеющих навыками в области хайтек производства и способных создавать новые и востребованные продукты.

Новизна и отличительные особенности программы

Ценность программы состоит в том, что в ней уделяется большое внимание практической деятельности учащихся. Программа основана на принципах развивающего обучения, способствует повышению качества обучения, формированию алгоритмического стиля мышления и усилению мотивации к обучению.

Новизна программы заключается в комплексном изучении предметов и входящих НИ В одно стандартное обучение общеобразовательных школ. Программа направлена на получение начальных навыков по созданию управляющих программ для станков с ЧПУ, дающих производственных профессиях. представление 0 программирования адаптированы к уровню восприятия обучающихся, что позволяет начать профориентацию обучающихся уже со среднего звена школы. предполагает Освоение разделов программы получение навыков программирования.

В ходе реализации программы обучающиеся самостоятельно решают широкий спектр различных задач, что помогает им получить полное представление о научно-исследовательской работе.

Программа тесно связана с проведением массовых мероприятий в научнотехнической сфере для детей (выставками, конкурсами, конференциями), что позволяет, не выходя за рамки учебного процесса, принимать активное участие в мероприятиях различного уровня от муниципального до международного.

На занятиях используются различные формы обучения: индивидуальная (самостоятельное выполнение заданий); групповая, которая предполагает наличие системы «руководитель – группа - обучающийся»; парная, с учетом интересов и способностей каждого обучающегося.

Педагогическая целесообразность.

Педагогическая целесообразность данной программы заключается в том, что она отвечает потребностям общества и образовательным стандартам в формировании компетентной, творческой личности. Программа носит сбалансированный характер и направлена на развитие научно-исследовательской культуры обучающихся.

В ходе реализации программы происходит формирование и систематизация знаний, развитие творческих способностей, воспитание личности с активной жизненной позицией, способной самостоятельно ставить перед собой задачи и решать их, находя оригинальные способы решения. Через изучение и овладение знаниями технических характеристик и информационных технологий формируется техническое мышление современного ребенка, готового к разработке и внедрению инноваций в жизнь.

Содержание программы определяется с учётом возрастных особенностей обучающихся, широкими возможностями социализации в процессе общения.

Решение технических задач в процессе проектирования различных объектов в области хайтек производства формирует у обучающихся умение творчески подходить к поставленной задаче, а совместная работа в сплоченном коллективе детей, которые ставят перед собой единую цель, тесным образом связана с интеллектуальным, эмоциональным и нравственным развитием каждого ребенка.

Дополнительность программы по отношению к программам общего образования заключается в её ориентированности на изучение и привлечение учащихся к современным технологиям хайтек. Обучающиеся имеют возможность применять на практике свои знания, полученные на уроках в школе.

Адресат программы: дети в возрасте от 12 до 16 лет.

Характеристика возрастной группы.

Программа рассчитана на широкий возрастной диапазон обучающихся: 12-16 лет. Подростковый период отличается выходом ребенка на качественно новую социальную позицию, в которой формируется его сознательное отношение к себе как члену общества. Основной формой самопознания подростка является сравнение себя с другими людьми — взрослыми, сверстниками. Поведение подростка регулируется его самооценкой, формируется общения с окружающими людьми. самооценка ходе Первостепенное возрасте приобретает общение значение В ЭТОМ сверстниками.

Особое значение в этом возрасте для ребенка имеет коллектив, общественное мнение, оценка сверстниками его поступков и действий. Дети стремятся завоевать в глазах сверстников авторитет, занять достойное место в

В детей проявляется коллективе. ЭТОМ возрасте y стремление собственной самостоятельности И независимости, возникает интерес абстрактные формируется самооценка, развиваются мышления. Общаясь со сверстниками, подростки активно осваивают нормы, цели, средства социального поведения, вырабатывают критерии оценки себя и других, Педагогов воспринимают через призму общественного мнения группы.

В связи с этим основная форма проведения занятий — это практические работы, в ходе которых у детей появляется возможность продемонстрировать свои индивидуальные способности и коллективные решения поставленных задач. Все занятия носят познавательный характер, обеспечены демонстрационным материалом, что позволяет их адаптировать к конкретному возрасту.

Объём программы: 72 часа

Срок освоения программы: 1 год.

Режим занятий: Занятия проводятся 2 раза в неделю по 2 часа.

Формы обучения и особенности организации образовательного процесса

Приоритетным методом организации практической деятельности обучающихся является практическая работа, а на более поздних этапах -Технология проектирования предусматривает: проектная деятельность. решение обущающимся или группой обучающихся определенной проблемы, использование разнообразных методов, средств обучения, интегрирование знаний, умений из различных областей науки, техники, творчества. Учебное проектирование ориентировано на самостоятельную деятельность обучающихся - индивидуальную, парную или групповую.

Программа предусматривает использование следующих форм работы: фронтальной - подача материала всему коллективу воспитанников; индивидуальной - самостоятельная работа обучающихся с оказанием педагогом помощи при возникновении затруднения, не уменьшая активности обучающегося и содействуя выработки навыков самостоятельной работы; групповой - обучающимся предоставляется возможность самостоятельно

построить свою деятельность на основе принципа взаимозаменяемости, ощутить помощь со стороны друг друга, учесть возможности каждого на конкретном этапе деятельности. Всё это способствует более быстрому и качественному выполнению заданий;

дистанционной - с применением телекоммуникационных технологий, дающих возможность обучающим освоить объём требуемой информации без непосредственного контакта с педагогом.

Особым приёмом при организации групповой формы работы является ориентирование детей на создание так называемых минигрупп или подгрупп с учётом их возраста и опыта работы.

Формирование групп обучающихся происходит по возрастному ограничению - состав группы постоянный.

Основная форма обучения - комплексные занятия.

На этапе изучения нового материала используются формы обучения: лекции, объяснения, рассказ, демонстрация, игры;

На этапе практической деятельности используются формы обучения: беседы, дискуссии, практическая работа;

На этапе освоения навыков используются творческие задания;

На этапе проверки полученных знаний используются формы обучения: публичные выступления с демонстрацией результатов работы, дискуссии, рефлексия.

- В процессе обучения по программе используются разнообразные педагогические технологии:
- технологии развивающего обучения, направленные на общее целостное развитие личности, на основе активно-деятельного способа обучения, учитывающие закономерности развития и особенности индивидуума;
- технологии личностно-ориентированного обучения, направленные на развитие индивидуальных познавательных способностей каждого ребенка, максимальное выявление, раскрытие и использование его опыта;
- технологии дифференцированного обучения, обеспечивающие обучение каждого обучающегося на уровне его возможностей и способностей;
- технологии сотрудничества, реализующие демократизм, равенство, партнерство в отношениях педагога и обучающегося;
- проектные технологии достижение цели через детальную разработку проблемы, которая должна завершиться реальным, осязаемым практическим результатом, оформленным тем или иным образом;
- компьютерные технологии, формирующие умение работать с информацией, исследовательские умения, коммуникативные способности.

В практике выступают различные комбинации этих технологий, их элементов.

Все виды практической деятельности в программе направлены на освоение различных комбинаций технологий работы с информацией, компьютером, программным обеспечением, сопутствующей документацией и методическими материалами. Большое внимание уделяется обеспечению безопасности труда обучающихся при выполнении различных работ, в том числе по соблюдению правил электробезопасности.

Методы образовательной деятельности

При проведении занятий используются следующие методы:

- объяснительно-иллюстрационный метод обучающиеся слушают объяснения педагога и наблюдают за демонстрационным экраном или экранами компьютеров на ученических рабочих местах;
- эвристический метод обучение, ставящее целью конструирование учеником собственного смысла, целей и содержания образования, а также процесса его организации, диагностики и осознания;

- метод устного изложения, позволяющий в доступной форме донести до обучающихся сложный материал;
- метод проверки, оценки знаний и навыков, позволяющий оценить переданные педагогом материалы и, по необходимости, вовремя внести необходимые корректировки по усвоению знаний на практических занятиях;
- исследовательский метод обучения, дающий обучающимся возможность проявить себя, показать свои возможности, добиться определенных результатов;
- метод проблемного изложения материала, когда перед обучающимся ставится некая задача, позволяющая решить определенный этап процесса обучения и перейти на новую ступень обучения;
- метод закрепления и самостоятельной работы по усвоению знаний и навыков;
- диалоговый и дискуссионный метод;
- игровой метод (игра-квест на развитие внимания, памяти, воображения).

1.2. Цель и задачи программы

Цель образовательной программы:

Основной целью образовательной программы является создание условий для профессионального самоопределения обучающихся, для мотивации, подготовки и возможного продолжения обучения в ВУЗах и последующей работы на предприятиях по специальностям, связанных с высокотехнологичными производственными системами, электроникой, машинным обучением, технологией искусственного интеллекта.

Целевые ориентиры программы направлены на развитие инженерного и изобретательского мышления детей, навыков командного взаимодействия, моделирования, прототипирования, программирования, освоения передовых технологий в области конструирования, мехатроники, электроники, компьютерных технологий.

Задачи образовательной программы Обучающие:

- 1. Формирование знаний обучающихся об истории развития отечественной и мировой техники, ее создателях, о различных направлениях изучения высокотехнологичных систем, электроники, технологий искусственного интеллекта;
- 2.Изучение принципов работы современных производственных станков, состояние и перспективы цифрового производства в настоящее время;
- 3. Формирование умения ориентироваться на идеальный конечный результат;
- 4. Обучение владению технической терминологией, технической грамотности;
- 5. Формирование умения пользоваться технической литературой;
- 6. Формирование целостной научной картины мира;
- 7. Изучение приемов и технологий разработки простейших алгоритмов и систем управления, машинного обучения, технических устройств и объектов управле-

ния.

- 8. Обучение ориентироваться в задании, планировать и контролировать свою работу с помощью педагога;
- 9.Ознакомление обучающих с различными видами профессиональных компетенций;
- 10. Формирование умения видеть проблемы, формулировать задачи, искать пути их решения;
- 11.Обучение самостоятельному анализу проделанной детьми деятельности (проекта) посредством рефлексии.

Развивающие:

- 1. Развитие воли, терпения, самоконтроля, внимания, памяти, фантазии;
- 2. Развитие способности осознанно ставить перед собой конкретные задачи, разбивать их на отдельные этапы и добиваться их выполнения;
- 3. Стимулирование познавательной активности обучающихся посредством включения их в различные виды конкурсной деятельности.
- 4. Развитие аналитических способностей, творческого мышления, внимания, памяти;
- 5. Развивитие коммуникативных умений: изложение мыслей в чёткой логической последовательности, отстаивание своей точки зрения, анализ ситуации самостоятельный поиск ответов на вопросы путём логических рассуждений;
- 6.Развитие навыков проектирования, пространственного воображения, глазомера;
- 7. Развитие умения работать в команде.

Воспитывающие:

- 1. Воспитание трудолюбия, аккуратности, бережливости, усидчивости;
- 2. Воспитание ответственности, самоорганизации, дисциплинированности;
- 3. Воспитание уважительного отношения к товарищам, к педагогу;
- 4.Воспитание чувства коллективизма, взаимопомощи, уважения к творческому труду;
- 5. Формирование у обучающихся организаторских и лидерских качеств, стремление к получению качественного законченного результата;
- 6. Совершенствование умения адекватно оценивать и представлять результаты совместной или индивидуальной деятельности в процессе создания проекта;
- 7.Воспитание чувства патриотизма, гражданственности, гордости за достижения отечественной науки и техники.

1.3. Планируемые результаты освоения программы

В результате освоения стартового модуля «Основы хайтек», обучающиеся *должны знать:*

- правила безопасного пользования инструментами и оборудованием, организовывать рабочее место;
- оборудование и инструменты, используемые в области хайтек творчества;
- основные принципы работы на станках с ЧПУ;
- основные направления развития современного цифрового производства;
- основные сферы применения робототехники, мехатроники и электроники в задачах цифрового производства;
- основные принципы работы электронных схем и систем управления объектами;
- основы языка программирования, в том числе и графические языки программирования;

должны уметь:

- соблюдать технику безопасности;
- разрабатывать простейшие системы с использованием электронных компонентов и механических элементов;
- разрабатывать простейшие алгоритмы и системы управления станками с ЧПУ;
- решать технические задачи в процессе проектирования (планирование предстоящих действий, самоконтроль, применение полученных знаний, приемов и опыта и т.д.);
- работать с литературой, с журналами, с каталогами, в интернете (изучать и обрабатывать информацию);
- видеть проблемы, формулировать задачи, искать пути их решения;
- разбивать задачи на подзадачи;
- защищать свою точку зрения;
- работать в команде;
- проводить мозговой штурм;
- применять логическое и аналитическое мышление при решении задач.

Личностные результаты:

- формирование коммуникативной компетентности в общении и сотрудничестве со сверстниками, детьми старшего и младшего возраста, взрослыми в процессе образовательной, общественно полезной, учебно-исследовательской, творческой и других видов деятельности;
- развитие любознательности и формирование интереса к изучению современных технологий;
- соблюдение норм и правил поведения, принятых в образовательном учреждении;
- инициатива и ответственность за результаты обучения, готовность и способность к саморазвитию и самообразованию на основе мотивации к обучению и познанию;
- развитие интеллектуальных и творческих способностей;

- воспитание ответственного отношения к труду;
- формирование мотивации дальнейшего изучения хайтек творчества.

Метапредметные результаты:

- понимать принципы работы современных автоматизированных систем цифрового производства;
- уметь анализировать процессы обработки материалов;
- уметь выявлять и фиксировать проблемные стороны в процессе обработки материала на станке с ЧПУ;
- уметь формулировать задачу на проектирование исходя из выявленной проблемы;
- уметь разбивать задачу на этапы её выполнения;
- уметь самостоятельно определять цели своего обучения, ставить и формулировать для себя новые задачи в познавательной деятельности, развивать мотивы и интересы своей познавательной деятельности
- овладеть элементами самостоятельной организации учебной деятельности, что включает в себя умения ставить цели и планировать личную учебную деятельность, оценивать собственный вклад в деятельность группы, проводить самооценку уровня личных учебных достижений;
- освоить элементарные приёмы исследовательской деятельности, доступные для детей младшего школьного возраста: формулировать с помощью педагога цели учебного исследования (опыта, наблюдения), составлять план, фиксировать результаты, использовать приемы программирования, формулировать выводы по результатам исследования;
- формировать приёмы работы с информацией, что включает в себя умения поиска и отбора источников информации в соответствии с учебной задачей, а также понимание информации, представленной в различной знаковой форме (таблицы, диаграммы, графики, рисунки и др.);
- развивать коммуникативные умения и овладение опытом межличностной коммуникации, корректное ведение диалога и участие в дискуссии, а также участвовать в работе группы в соответствии с обозначенной ролью.

Предметные результаты:

- *ценностно-ориентационная сфера* сформированность представлений о взаимодействии между человеком и техникой, как важнейшем элементе культурного опыта человечества; понимание взаимосвязи между потребностями пользователей и свойствами проектируемых предметов и процессов;
- -познавательная сфера сформированость элементарных исследовательских умений; применение полученных знаний и умений для решения практических задач в повседневной жизни;
- *трудовая сфера* владение навыками работы различными инструментами в процессе изготовления моделей, прототипирования, а также основы работы с современным оборудованием.

Материал программы подобран с учетом формирования определенных компетенций (soft skills «гибких навыков» и hard skills «жёстких навыков»).

«Гибкие навыки» (soft skills) – комплекс неспециализированных, важных надпрофессиональных навыков, которые отвечают за успешное участие в рабочем процессе, высокую производительность, являются сквозными, однако не связаны с конкретной предметной областью.

Результатом освоения стартового уровня является освоение общедоступной и универсальной информации, имеющей минимальную сложность, будь то идеология «Кванториума» (цели и задачи), представление о возможностях квантумов и оборудования, межквантумное взаимодействие, развитие творческих способностей, стимулирование формирование И «генерация идей», мотивация обучающихся к познанию, техническому творчеству, трудовой деятельности и формирование «гибких навыков» (soft skills): инженерное изобретательское мышление, креативность, критическое мышление, коммуникативность.

1.4. Содержание программы

Учебный план

Nº	Название раздела\темы	Количес	тво академич	Форма ат-	
п/п		Всего	Теория	Практика	тестации/ контроля
1	Введение в образовательную программу, техника безопасности	2	2		опрос
2	Конструирование	38	8	30	
2.1	Современные системы цифрового производства	2	2		тест/опрос
2.2	Занятие на командообразование	2	1	1	игра
2.3	Основные компоненты станков с ЧПУ	4	1	3	тест/опрос
2.4	Основы работы с ручным инструментом	4	1	3	тест/опрос/ демонстрация
2.5	Конструирование простых механизмов	6		6	меха- низм/кон- струкция
2.6	Система лазерного станка с ЧПУ	6	1	5	тест/опрос
2.7	Система фрезерного станка с ЧПУ	8	1	7	тест/опрос
2.8	Моделирование	6	1	5	модель
3	Программирование	30	8	22	
3.1	Обзор ПО. Среда программирования Art Cam	2	1	1	опрос
3.2	Алгоритмы управления станком с ЧПУ G-коды	2	1	1	программа

3.3	Циклы и спецоперации в G-	2	1	1	программа
	кодах				
3.4	Основы теории резания, выбор	2	1	1	опрос
	инструмента и режимов его				
	работы				
3.5	Основы теории	2	1	1	тест/опрос
	энергетического резания				
	(лазерная и плазменная резка)				
3.6	Пост-трансляторы и основы	10	2	8	тест/опрос
	разработки управляющих				
	программ для станка с ЧПУ				
3.7	Операции с данными	4	1	3	программа
3.8	Разработка модели	4		4	модель
3.9	Программирование модели	2		2	программа
4.	Подготовка и презентация	2		2	защита
	проекта				проекта
	ИТОГО	72	18	54	

Содержание учебного плана.

1.Введение в образовательную программу, техника безопасности - 2 часа.

Теория. Значение высоких технологий в жизни человека. Что такое техническое моделирование, цифровое производство, электроника, мехатроника. Задачи и план работы учебной группы. Демонстрация готовых изделий. Правила поведения на занятиях и во время перерыва. Инструктаж по технике безопасности.

2. Конструирование - 38 часов.

Тема 1. Современные системы цифрового производства (2 ч):

Теория: История систем цифрового производства за рубежом и в России. Основные направления современного цифрового производства. Хайтек в промышленности. Промышленная робототехника.

Практика: Демонстрация работы хайтек оборудования.

Тема 2. Занятие на командообразование (2 ч):

<u>Теория:</u> Что такое команда, плюсы и минусы, способы работы в команде . <u>Практика:</u> Игры на знакомство и командообразование. Работа в команде. Работа по технологии SCRUM.

Тема 3. Основные компоненты (4 ч):

Теория: Основные принципы работы электронных систем управления станком с ЧПУ. Перечень деталей, название узлов и деталей, Принципы их работы.

<u>Практика:</u> Знакомство со станком с ЧПУ. Датчики, сервоприводы, микрокомпьютеры и микроконтроллеры.

<u>Тема 4. Основы работы с ручным инструментом (4 ч):</u>

<u>Теория:</u> Механический и электроинструмент. Устройство и принцип работы. Техника безопасности.

<u>Практика:</u> Основы работы механическим инструментом. Основы работы с электроинструментом.

Тема 5. Конструирование простых механизмов (6 ч):

<u>Теория:</u> Знакомство со способами изготовления дополнительного инструмента – оснастки. Виды оснасток.

Практика: Изготовление оснастки по чертежу.

Тема 6. Система лазерного станка с ЧПУ (6 ч):

Теория: Знакомство с шаговыми двигателями и сервоприводами. Знакомство с системами и узлами лазерного гравера. Принципы работы и настройка станка. **Практика:** Работа на лазерном гравере, изготовление тестовой детали.

<u>Тема 7. Система фрезерного станка с ЧПУ (8 ч):</u>

Теория: Знакомство с понятием фрезерной обработки материала. Устройство и принцип работы фрезерного стенка с ЧПУ. Изучение узлов компонентов фрезерного станка.

<u>Практика:</u> Настройка станка, изготовление тестовой детали.

Тема 8. Моделирование (6 ч):

Теория: Основы 3D проектирования, САDсистемы.

Практика: Моделирование в системах Blender, SolidWorks, Компас.

3.Программирование - 32 часа.

Тема 1. Обзор ПО. Среда программирования ArtCam(2 ч):

Теория: Визуальные системы CAD/CAM проектирования.

<u>Практика:</u> Знакомство с программным обеспечением по созданию управляющих программ для станков с ЧПУ.

Тема 2. Алгоритм управления станком G-коды(2 ч):

Теория: Знакомство с понятием алгоритма. Изучение основных свойств алгоритма. Знакомство с видами алгоритмов.

Практика: Создание простых программ в G-кодах.

Тема 3. Циклы и спецоперации в G-кодах(2 ч):

Теория: Блок кодов «Цикл». Знакомство с понятием цикла. Циклы в программировании, варианты их организации.

<u>Практика:</u> Программирование с цикличными условиями.

<u>Тема 4.Основы теории резания. Выбор инструмента и режимов его работы(2 ч):</u>

Теория: Принципы механической обработки материала резанием. Изучение режимов. Виды резов. Основные параметры и их выбор для различных материалов.

<u>Практика:</u> Изготовление тестовой детали. Самостоятельный расчет режимов работы инструмента.

<u>Тема 5. Основы теории энергетического резания:лазерная,плазменная резка(2 ч):</u>

Теория: Знакомство с понятием энергетической обработки материала. Основы лазерной и плазменной технологии обработки материала.

<u>Практика:</u> Настройка режимов работы лазерного гравера. Изготовление тестовой детали.

<u>Тема 6. Пост-трансляторы и основы разработки управляющих программ</u> (10 ч);

Теория: Понятие пост-транслятора. Особенности написания управляющих программ для разных станков с ЧПУ.

Практика: Изучение пост-трансляторов на прмере системы ArtCam

<u>Тема 7. Операции с данными (4 ч):</u>

<u>Теория:</u> Изучение программных блоков, необходимых для выполнения различных операций над числовыми, логическими и текстовыми данными. Знакомство с функцией регистрации данных в режиме реального времени.

Практика: Создание тестовой программы.

Тема 8. Разработка модели (4 ч):

Теория: Основы редактирования существующих 3D моделей.

<u>Практика:</u> Конструирование собственной модели или доработка предыдущих вариантов, на основе изученного материала. Обсуждение элементов моделей. Сравнение моделей.

<u>Тема 9. Программирование модели (2 ч):</u>

Теория: Полный цикл разработки управляющей программы

<u>Практика:</u> Программирование собственной модели, разработка и запись одного или нескольких вариантов управляющего алгоритма. Испытание модели. Обсуждение возможных неисправностей. Отладка программы.

4.Подготовка и презентация проекта -2ч

Подготовка презентации проекта. Презентация работы управляющих программ на симуляторах станков с ЧПУ и на реальных станках. Изготовление деталей. Подведение итогов.

2. Комплекс организационно-педагогических условий.

2.1. Календарно-учебный график

				1			3.7	· ·
№ π\π	Месяц	Число	Время проведения занятия	Форма занятия	Кол-во часов	Тема занятия	Место проведения	Форма контроля
1				компле ксное	2	Введение в образовательную программу, техника безопасности	Лаборатория Хайтек	опрос
2				компле ксное	2	Современные системы цифрового производства	Лаборатория Хайтек	тест/опрос
3				компле ксное	2	Занятие на командообразование	Лаборатория Хайтек	игра
4				компле ксное	2	Основные компоненты станков с ЧПУ (лазерный гравер)	Лаборатория Хайтек	тест/опрос
5				компле ксное	2	Основные компоненты станков с ЧПУ (фрезерный станок)	Лаборатория Хайтек	тест/опрос
6				комплексное	2	Основы работы с ручным инструментом (инструмент для грубой обработки)	Лаборатория Хайтек	тест/опрос/ демонстрац ия
7				комплексное	2	Основы работы с ручным инструментом (инструмент для тонкой обработки)	Лаборатория Хайтек	тест/опрос/ демонстрац ия
8				компле ксное	2	Конструирование простых механизмов	Лаборатория Хайтек	меха- низм/кон- струкция
9				компле ксное	2	Конструирование простых механизмов	Лаборатория Хайтек	меха- низм/кон- струкция
10				компле ксное	2	Конструирование простых механизмов	Лаборатория Хайтек	меха- низм/кон- струкция
11				компле ксное	2	Система лазерного станка с ЧПУ (Механика станка)	Лаборатория Хайтек	тест/опрос
12				компле ксное	2	Система лазерного станка с ЧПУ (Электрика станка)	Лаборатория Хайтек	тест/опрос
13				компле ксное	2	Система лазерного станка Лаборатори с ЧПУ (ЭВМ станка) Хайтек		тест/опрос
14				комплексное	2	Система фрезерного станка с ЧПУ (Механика станка)	Лаборатория Хайтек	тест/опрос

15	компле ксное	2	Система фрезерного станка с ЧПУ (Электрика	Лаборатория Хайтек	тест/опрос
			станка)		
16	компле	2	Система фрезерного станка с ЧПУ (ЭВМ станка)	Лаборатория Хайтек	тест/опрос
17	компле ксное	2	Система фрезерного станка с ЧПУ (Инструмент станка)	Лаборатория Хайтек	тест/опрос
18	компле ксное	2	Моделирование (Базовые тела)	Лаборатория Хайтек	модель
19	компле ксное	2	Моделирование (Тела вращения)	Лаборатория Хайтек	модель
20	компле ксное	2	Моделирование (Тела выдавливания и вырезы)	Лаборатория Хайтек	модель
21	компле ксное	2	Обзор ПО. Среда программирования ArtCam	Лаборатория Хайтек	опрос
22	компле ксное	2	Алгоритмы управления станком с ЧПУ G-коды	Лаборатория Хайтек	программа
23	компле ксное	2	Циклы и спецоперации в G-кодах	Лаборатория Хайтек	программа
24	компле ксное	2	Основы теории резания, выбор инструмента и режимов его работы	Лаборатория Хайтек	опрос
25	компле ксное	2	Основы теории энергетического резания (лазерная и плазменная резка)	Лаборатория Хайтек	опрос
26	компле ксное	2	Пост-трансляторы и основы разработки управляющих программ для станка с ЧПУ	Лаборатория Хайтек	программа
27	компле ксное	2	Пост-трансляторы и основы разработки управляющих программ для станка с ЧПУ	Лаборатория Хайтек	программа
28	комплексное	2	Пост-трансляторы и основы разработки управляющих программ для станка с ЧПУ	Лаборатория Хайтек	программа
29	компле ксное	2	Пост-трансляторы и основы разработки управляющих программ для станка с ЧПУ	Лаборатория Хайтек	программа
30	компле ксное	2	Пост-трансляторы и основы разработки управляющих программ для станка с ЧПУ	Лаборатория Хайтек	программа

31		компле ксное	2	Операции с данными (редактирование программ после	Лаборатория Хайтек	программа
				постпроцессоров)		
32		компле ксное	2	Операции с данными (редактирование программ в процессе исполнения)	Лаборатория Хайтек	программа
33		компле ксное	2	Разработка модели	Лаборатория Хайтек	модель
34		компле ксное	2	Разработка модели	Лаборатория Хайтек	модель
35		компле ксное	2	Программирование модели	Лаборатория Хайтек	программа
36		компле ксное	2	Подготовка и презентация проекта	Лаборатория Хайтек	защита проекта

2.2.Условия реализации программы.

Успешность реализации программы в значительной степени зависит от уровня квалификации преподавательского состава и материально - технического обеспечения.

Требования к педагогическому составу:

- Среднее профессиональное педагогическое с техническим уклоном (техническое) или высшее педагогическое (техническое) образование по направлениям (информатика, математика, физика, администрирование информационных систем, компьютерная безопасность, радиоэлектроника).
- Опыт работы и навыки преподавания в режиме проектной деятельности.

Требования к материально - техническому обеспечению:

Основными условиями реализации программы являются наличие кабинета, отвечающего нормам охраны труда, техники безопасности, пожарной и электробезопасности, санитарным и гигиеническим требованиям, мебели (рабочий стол, стулья, рабочее место педагога), оборудование.

Материально-техническое обеспечение

Учебная аудитория для проведения практических занятий, оснащенная мебелью на 10 посадочных мест, компьютерной техникой, не менее 1 ПК на 1 учащегося. Учебное оборудование рассчитано на группу из 10 учащихся:

№ п/п	Наименование
1	Лазерный гравер Trotec Speedy-100R C60 (CO2 лазер 60 Вт) + система поддува с
	компрессором. (Компрессор для системы поддува +Рама на колесах+Ячеистый стол
	для резки (ячейка 6,4 мм либо 12,7 мм))
2	Вращатель для гравировки цилиндрических изделий с конусами Speedy-100R
3	Atmos Cube
4	3D принтер Nobel 1.0 XYZprinting (XYZ)
5	3D принтер Raise3D Pro2
6	3D принтер Hercules Strong DUO
7	Ручной 3D сканер EinScan Pro 2X
8	3D принтер Wanhao Duplicator 6 Plus
9	Фрезерный станок ROLAND MODELA MDX-50
10	ZS-FS - 4 шт
	ZS-SCR - 3 IIIT
	ZS-SC - 3 IIIT
11	ZC-20-30, 3мм цанга для SRM-20
12	ZCL-50 (поворотная ось к MDX-50)
13	SRM-20, фрезерный станок Roland серии monoFab
14	ТОКАРНЫЙ СТАНОК ПО МЕТАЛЛУ 230 В JET BD-8VS
15	HACTOЛЬНЫЙ СВЕРЛИЛЬНЫЙ СТАНОК JET JDP-8BM
16	Metabo 627154000
17	Сверлильный станок ДИОЛД СВС-500/50 20010021
18	СВЕРЛИЛЬНЫЙ СТАНОК 400 В ЈЕТ JDP-15В
19	Сверлильные тиски WILTON Q75 75x80 мм WI91193RU
20	Заточной станок TRIOD UTG-25 123020
21	СТАНОК ЗАТОЧНОЙ С ВОДЯНЫМ ОХЛАЖДЕНИЕМ JET JSSG-10
22	Точило Bosch GBG 35-15 060127A300
23	Тиски слесарные 100 мм GV-STM04
24	Набор ручного механического инструмента
25	Набор электроинструмента
26	Набор расходных материалов (фанера, ABS/PLAПластики, оргстекло)

Использование оборудования

№ п\п	Кол- во	Тема занятия	Место проведения	Наименование используемого оборудования
1	2	Введение в образовательную программу, техника безопасности	Лаборатория Хайтек	Ознакомление с оборудованием лаборатории Хайтек
2	2	Современные системы цифрового производства	Лаборатория Хайтек	Ознакомление с оборудованием лаборатории Хайтек
3	2	Занятие на командообразование	Лаборатория Хайтек	Лазерный гравер Trotec Speedy-100R C60 (CO2 лазер 60 Вт) + система поддува с компрессором. (Компрессор для системы поддува +Рама на колесах+Ячеистый стол для резки

		I		
				(ячейка 6,4 мм либо 12,7 мм))
				Набор расходных материалов (фанера,
				ABS/PLAПластики, оргстекло)
4	2	Основные компоненты	Лаборатория	Лазерный гравер Trotec Speedy-100R
		станков с ЧПУ	Хайтек	С60 (СО2 лазер 60 Вт) + система
		(лазерный гравер)		поддува с компрессором. (Компрессор
				для системы поддува +Рама на
				колесах+Ячеистый стол для резки
				(ячейка 6,4 мм либо 12,7 мм));
				Вращатель для гравировки
				цилиндрических изделий с конусами
				Speedy-100R;
				Atmos Cube
				Набор расходных материалов (фанера,
				ABS/PLAПластики, оргстекло)
5	2	Основные компоненты	Лаборатория	Фрезерный станок ROLAND
		станков с ЧПУ	Хайтек	MODELA MDX-50
		(фрезерный станок)		ZS-FS, ZS-SCR, ZS-SC
				ZC-20-30, 3 мм цанга для SRM-20,
				ZCL-50 (поворотная ось к MDX-50);
				SRM-20, фрезерный станок Roland
				серии monoFab
				Набор расходных материалов (фанера,
	2	0	Π	АВЅ/РЬАПластики, оргстекло)
6	2	Основы работы с	Лаборатория Хайтек	НАСТОЛЬНЫЙ СВЕРЛИЛЬНЫЙ
		ручным инструментом	Лаитек	CTAHOK JET JDP-8BM; Metabo 627154000
		(инструмент для грубой		
		обработки)		Сверлильный станок ДИОЛД СВС- 500/50 20010021
				СВЕРЛИЛЬНЫЙ СТАНОК 400 В ЈЕТ
				JDP-15B
				Сверлильные тиски WILTON Q75
				75x80 mm WI91193RU
				Заточной станок TRIOD UTG-25
				123020
				СТАНОК ЗАТОЧНОЙ С ВОДЯНЫМ
				ОХЛАЖДЕНИЕМ JET JSSG-10
				Точило Bosch GBG 35-15 060127A300
				Тиски слесарные 100 мм GV-STM04
				Набор электроинструмента
				Набор ручного механического
				инструмента
				Набор расходных материалов (фанера,
				ABS/PLAПластики, оргстекло)
7	2	Основы работы с	Лаборатория	НАСТОЛЬНЫЙ СВЕРЛИЛЬНЫЙ
		ручным инструментом	Хайтек	CTAHOK JET JDP-8BM;
		(инструмент для тонкой		Сверлильный станок ДИОЛД СВС-
		обработки)		500/50 20010021
				Сверлильные тиски WILTON Q75
				ME OO TITOTTOTT
				75x80 mm WI91193RU
				75х80 мм WI91193RU Тиски слесарные 100 мм GV-STM04 Набор ручного механического

			r	
				инструмента
				Набор электроинструмента
				Набор расходных материалов (фанера,
				ABS/PLAПластики, оргстекло)
8	2	Конструирование	Лаборатория	Лазерный гравер Trotec Speedy-100R
		простых механизмов	Хайтек	С60 (СО2 лазер 60 Вт) + система
		1		поддува с компрессором. (Компрессор
				для системы поддува +Рама на
				колесах+Ячеистый стол для резки
				(ячейка 6,4 мм либо 12,7 мм))
				Набор расходных материалов (фанера,
				АВS/PLАПластики, оргстекло)
9	2	Конструирование	Лаборатория	Лазерный гравер Trotec Speedy-100R
	2		Хайтек	С60 (СО2 лазер 60 Вт) + система
		простых механизмов	Лаитек	поддува с компрессором. (Компрессор
				для системы поддува +Рама на
				колесах+Ячеистый стол для резки
				(ячейка 6,4 мм либо 12,7 мм))
				Набор расходных материалов (фанера,
10	2	Y.	T .	АВS/РLАПластики, оргстекло)
10	2	Конструирование	Лаборатория	Лазерный гравер Trotec Speedy-100R
		простых механизмов	Хайтек	С60 (СО2 лазер 60 Вт) + система
				поддува с компрессором. (Компрессор
				для системы поддува +Рама на
				колесах+Ячеистый стол для резки
				(ячейка 6,4 мм либо 12,7 мм))
				Набор расходных материалов (фанера,
				ABS/PLAПластики, оргстекло)
11	2	Система лазерного	Лаборатория	Лазерный гравер Trotec Speedy-100R
		станка с ЧПУ	Хайтек	С60 (СО2 лазер 60 Вт) + система
		(Механика станка)		поддува с компрессором. (Компрессор
				для системы поддува +Рама на
				колесах+Ячеистый стол для резки
				(ячейка 6,4 мм либо 12,7 мм))
				Набор расходных материалов (фанера,
				ABS/PLAПластики, оргстекло)
12	2	Система лазерного	Лаборатория	Лазерный гравер Trotec Speedy-100R
		станка с ЧПУ	Хайтек	С60 (СО2 лазер 60 Вт) + система
		(Электрика станка)		поддува с компрессором. (Компрессор
				для системы поддува +Рама на
				колесах+Ячеистый стол для резки
				(ячейка 6,4 мм либо 12,7 мм))
				Набор расходных материалов (фанера,
				АВЅ/РLАПластики, оргстекло)
13	2	Система лазерного	Лаборатория	Лазерный гравер Trotec Speedy-100R
		станка с ЧПУ (ЭВМ	Хайтек	С60 (СО2 лазер 60 Вт) + система
		станка)		поддува с компрессором. (Компрессор
				для системы поддува +Рама на
				колесах+Ячеистый стол для резки
				(ячейка 6,4 мм либо 12,7 мм))
				Набор расходных материалов (фанера,
				АВS/РLАПластики, оргстекло)
			າາ	TEDOTE LITTICE THEN, OPT CICKIO)

14	2	Characta passantana	Поборожения	Фрезерный станок ROLAND
14	2	Система фрезерного станка с ЧПУ	Лаборатория Хайтек	Фрезерный станок ROLAND MODELA MDX-50
		(Механика станка)	Лаитек	НАСТОЛЬНЫЙ СВЕРЛИЛЬНЫЙ
		(механика станка)		CTAHOK JET JDP-8BM;
				Стапок јет јот-ови, Сверлильный станок ДИОЛД СВС-
				500/50 20010021
				Сверлильные тиски WILTON Q75
				75х80 мм WI91193RU
				Тиски слесарные 100 мм GV-STM04
				Набор ручного механического
				инструмента
				Набор электроинструмента
				Набор расходных материалов (фанера,
15	2	Сматама франциона	Поборожаруя	ABS/PLAПластики, оргстекло) Фрезерный станок ROLAND
13		Система фрезерного станка с ЧПУ	Лаборатория Хайтек	Фрезерный станок ROLAND MODELA MDX-50
		(Электрика станка)	Adnick	НАСТОЛЬНЫЙ СВЕРЛИЛЬНЫЙ
		(Siekipinka etainka)		CTAHOK JET JDP-8BM;
				Сверлильный станок ДИОЛД СВС-
				500/50 20010021
				Сверлильные тиски WILTON Q75
				75х80 мм WI91193RU
				Тиски слесарные 100 мм GV-STM04
				Набор ручного механического
				инструмента
				Набор электроинструмента
				Набор расходных материалов (фанера,
1.6	2	Cramara Amarana	Поболожения	АВS/РLАПластики, оргстекло)
16	2	Система фрезерного станка с ЧПУ (ЭВМ	Лаборатория Хайтек	Фрезерный станок ROLAND MODELA MDX-50
		станка)	Zanick	НАСТОЛЬНЫЙ СВЕРЛИЛЬНЫЙ
		oranna)		CTAHOK JET JDP-8BM;
				Сверлильный станок ДИОЛД СВС-
				500/50 20010021
				Сверлильные тиски WILTON Q75
				75х80 мм WI91193RU
				Тиски слесарные 100 мм GV-STM04
				Набор ручного механического
				инструмента Набор электроинструмента
				Набор расходных материалов (фанера,
				наоор расходных материалов (фанера, ABS/PLAПластики, оргстекло)
17	2	Система фрезерного	Лаборатория	Фрезерный станок ROLAND
		станка с ЧПУ	Хайтек	MODELA MDX-50
		(Инструмент станка)		НАСТОЛЬНЫЙ СВЕРЛИЛЬНЫЙ
				CTAHOK JET JDP-8BM;
				Сверлильный станок ДИОЛД СВС-
				500/50 20010021
				Сверлильные тиски WILTON Q75
				75x80 mm WI91193RU
				Тиски слесарные 100 мм GV-STM04
				Набор ручного механического

	1		1		
				инструмента	
				Набор электроинструмента	
				Набор расходных материалов (фанера,	
				ABS/PLAПластики, оргстекло)	
18	2	Моделирование	Лаборатория	3D принтер Raise3D Pro2	
		(Базовые тела)	Хайтек	3D принтер Hercules Strong DUO	
		,		3D принтер Wanhao Duplicator 6 Plus	
				Фрезерный станок ROLAND	
				MODELA MDX-50	
19	2	Моделирование (Тела	Лаборатория	3D принтер Raise3D Pro2	
	_	вращения)	Хайтек	3D принтер Hercules Strong DUO	
		эр иж. (3D принтер Wanhao Duplicator 6 Plus	
				Фрезерный станок ROLAND	
				MODELA MDX-50	
				Набор расходных материалов (фанера,	
				наоор расходных материалов (фанера, ABS/PLAПластики, оргстекло)	
20	2	M (T	пс	• • • /	
20	2	Моделирование (Тела	Лаборатория	3D принтер Raise3D Pro2	
		выдавливания и	Хайтек	3D принтер Hercules Strong DUO	
		вырезы)		3D принтер Wanhao Duplicator 6 Plus	
				Фрезерный станок ROLAND	
				MODELA MDX-50	
				Набор расходных материалов (фанера,	
				ABS/PLAПластики, оргстекло)	
21	2	Обзор ПО. Среда	Лаборатория	Фрезерный станок ROLAND	
		программирования	Хайтек	MODELA MDX-50	
		ArtCam		3D принтер Raise3D Pro2	
				3D принтер Hercules Strong DUO	
				3D принтер Wanhao Duplicator 6 Plus	
				Набор расходных материалов (фанера,	
				ABS/PLAПластики, оргстекло)	
22	2	Алгоритмы управления	Лаборатория	Фрезерный станок ROLAND	
		станком с ЧПУ G-коды	Хайтек	MODELA MDX-50	
		, ,		3D принтер Raise3D Pro2	
				3D принтер Hercules Strong DUO	
				3D принтер Wanhao Duplicator 6 Plus	
				Набор расходных материалов (фанера,	
				АВS/РLАПластики, оргстекло)	
23	2	Циклы и спецоперации	Лаборатория	Фрезерный станок ROLAND	
23		в G-кодах	Хайтек	MODELA MDX-50	
		ь О-кодах	AMICK	НАСТОЛЬНЫЙ СВЕРЛИЛЬНЫЙ	
				CTAHOK JET JDP-8BM;	
				Сверлильный станок ДИОЛД СВС-	
				500/50 20010021	
				Сверлильные тиски WILTON Q75 75x80 мм WI91193RU	
				Тиски слесарные 100 мм GV-STM04	
				Набор ручного механического	
				инструмента	
				Набор электроинструмента	
				Набор расходных материалов (фанера,	
				ABS/PLAПластики, оргстекло)	
Ĭ		1		· · · /	

24	1 2		пс	TOKADIH HI CTAHOK TO ACTA TOX
24	2	Основы теории резания, выбор инструмента и режимов его работы	Лаборатория Хайтек	ТОКАРНЫЙ СТАНОК ПО МЕТАЛЛУ 230 В ЈЕТ ВD-8VS НАСТОЛЬНЫЙ СВЕРЛИЛЬНЫЙ СТАНОК ЈЕТ ЈDР-8ВМ; Сверлильный станок ДИОЛД СВС-500/50 20010021 Сверлильные тиски WILTON Q75 75х80 мм WI91193RU Тиски слесарные 100 мм GV-STM04 Набор ручного механического инструмента Набор электроинструмента Набор расходных материалов (фанера,
25	2	Основы теории энергетического резания (лазерная и плазменная резка)	Лаборатория Хайтек	АВЅ/РLАПластики, оргстекло) Лазерный гравер Trotec Speedy-100R С60 (СО2 лазер 60 Вт) + система поддува с компрессором. (Компрессор для системы поддува +Рама на колесах+Ячеистый стол для резки (ячейка 6,4 мм либо 12,7 мм)) Набор расходных материалов (фанера, АВЅ/РLАПластики, оргстекло)
26	2	Пост-трансляторы и основы разработки управляющих программ для станка с ЧПУ	Лаборатория Хайтек	Лазерный гравер Trotec Speedy-100R C60 (CO2 лазер 60 Bт) + система поддува с компрессором. (Компрессор для системы поддува +Рама на колесах+Ячеистый стол для резки (ячейка 6,4 мм либо 12,7 мм)) Набор расходных материалов (фанера, ABS/PLАПластики, оргстекло)
27	2	Пост-трансляторы и основы разработки управляющих программ для станка с ЧПУ	Лаборатория Хайтек	Лазерный гравер Trotec Speedy-100R C60 (CO2 лазер 60 Bт) + система поддува с компрессором. (Компрессор для системы поддува +Рама на колесах+Ячеистый стол для резки (ячейка 6,4 мм либо 12,7 мм)) Набор расходных материалов (фанера, ABS/PLАПластики, оргстекло)
28	2	Пост-трансляторы и основы разработки управляющих программ для станка с ЧПУ	Лаборатория Хайтек	Лазерный гравер Trotec Speedy-100R C60 (CO2 лазер 60 Bт) + система поддува с компрессором. (Компрессор для системы поддува +Рама на колесах+Ячеистый стол для резки (ячейка 6,4 мм либо 12,7 мм)) Набор расходных материалов (фанера, ABS/PLАПластики, оргстекло)
29	2	Пост-трансляторы и основы разработки управляющих программ для станка с ЧПУ	Лаборатория Хайтек	Лазерный гравер Trotec Speedy-100R C60 (CO2 лазер 60 Вт) + система поддува с компрессором. (Компрессор для системы поддува +Рама на колесах+Ячеистый стол для резки (ячейка 6,4 мм либо 12,7 мм))

				Набор расходных материалов (фанера, ABS/PLAПластики, оргстекло)	
30	2	Пост-трансляторы и основы разработки управляющих программ для станка с ЧПУ	Лаборатория Хайтек	Лазерный гравер Trotec Speedy-100R C60 (CO2 лазер 60 Bт) + система поддува с компрессором. (Компрессор для системы поддува +Рама на колесах+Ячеистый стол для резки (ячейка 6,4 мм либо 12,7 мм)) Набор расходных материалов (фанера, ABS/PLAПластики, оргстекло)	
31	2	Операции с данными (редактирование программ после постпроцессоров)	Лаборатория Хайтек	Лазерный гравер Trotec Speedy-100R C60 (CO2 лазер 60 Bт) + система поддува с компрессором. (Компрессор для системы поддува +Рама на колесах+Ячеистый стол для резки (ячейка 6,4 мм либо 12,7 мм)) 3D принтер Wanhao Duplicator 6 Plus Набор расходных материалов (фанера, ABS/PLАПластики, оргстекло)	
32	2	Операции с данными (редактирование программ в процессе исполнения)	Лаборатория Хайтек	Лазерный гравер Trotec Speedy-100R C60 (CO2 лазер 60 Вт) + система поддува с компрессором. (Компрессор для системы поддува +Рама на колесах+Ячеистый стол для резки (ячейка 6,4 мм либо 12,7 мм)) 3D принтер Wanhao Duplicator 6 Plus Набор расходных материалов (фанера, ABS/PLАПластики, оргстекло)	
33	2	Разработка модели	Лаборатория Хайтек	3D принтер Nobel 1.0 XYZprinting (XYZ) 3D принтер Raise3D Pro2 3D принтер Hercules Strong DUO 3D принтер Wanhao Duplicator 6 Plus Ручной 3D сканер EinScan Pro 2X Набор расходных материалов (фанера, ABS/PLАПластики, оргстекло)	
34	2	Разработка модели	Лаборатория Хайтек	3D принтер Raise3D Pro2 3D принтер Hercules Strong DUO 3D принтер Wanhao Duplicator 6 Plus Набор расходных материалов (фанера, ABS/PLAПластики, оргстекло)	
35	2	Программирование модели	Лаборатория Хайтек	3D принтер Raise3D Pro2 3D принтер Hercules Strong DUO 3D принтер Wanhao Duplicator 6 Plus Набор расходных материалов (фанера, ABS/PLAПластики, оргстекло)	
36	2	Подготовка и презентация проекта	Лаборатория Хайтек	3D принтер Raise3D Pro2 3D принтер Hercules Strong DUO 3D принтер Wanhao Duplicator 6 Plus Набор расходных материалов (фанера, ABS/PLAПластики, оргстекло)	

Состав группы

Группа обучающихся состоит из **10 человек**. Данное количество обусловлено спецификой образовательного процесса.

К работе в объединении дети приступают после проведения руководителями соответствующего инструктажа по правилам техники безопасной работы с инструментом, приспособлениями и используемым оборудованием.

2.3. Формы аттестации и критерии результативности обучения.

Формы аттестации

Процесс обучения по дополнительной общеобразовательной общеразвивающей программе предусматривает следующие формы диагностики и аттестации:

- 1. **Входная** диагностика, проводится перед началом обучения и предназначена для выявления уровня подготовленности детей к усвоению программы. Формы контроля: **беседа, опрос, тестирование.**
- 2. Итоговая диагностика проводится после завершения всей учебной программы. Формы контроля: презентация проекта, защита проекта.

Для отслеживания результативности реализации образовательной программы разработана система мониторингового сопровождения (текущий контроль: практические задания, формулировка идей, презентация идей) образовательного процесса для определения основных формируемых у детей посредством реализации программы компетентностей: предметных, социальных и коммуникативных.

Способ оценки, как правило, устный. Отмечаются недостатки выполненных работ в лёгкой форме. Основной акцент делается на её достоинства, чтобы не отбить у ребёнка желание обучаться и нацелить на исправление недостатков.

Формы подведения итогов обучения:

- индивидуальная устная/письменная проверка;
- фронтальный опрос, беседа;
- контрольные упражнения и тестовые задания;
- предъявление рабочей модели (механизма, конструкции, программы идр.);
- защита проекта;
- межгрупповые соревнования;
- проведение промежуточного и итогового тестирования;
- взаимооценка обучающимися работ друг друга.

Итоговая оценка развития личностных качеств обучающегося производится по трём уровням: «высокий», «средний» и «низкий».

Итоговая аттестация обучающихся проводится по результатам подготовки и защиты проекта (в разных формах), публичного выступления, выставки-

презентации, анализа посещаемости занятий, активности участия в программе по формированию общекультурных компетенций, результатам участия в конкурсах, соревнованиях и т.д.

Критерии оценки результативности обучения:

Параметры диагностики	Низкий уровень (изменения не замечены)	Средний уровень (изменения произошли, но обучающийся потенциально был способен к большему)	Высокий уровень (положительные изменения личностного качества обучающегося в течение обучения признаются как максимально возможные для него)
Теоретическая подготовка	Плохо владеет понятиями по пройденным темам, не может объяснить, что эти понятия обозначают, не применяет их на практике.	Владеет основными понятиями по пройденным темам, применяет их на практике. Не всегда может объяснить значение этих понятий.	Свободно владеет понятиями по пройденным темам, применяет их на практике, объясняет значение этих понятий.
Практическая подготовка	Владение инструментов Плохо владеет инструментом, не знает правила техники безопасности при работе с инструментом.	Знает правила техники безопасности при работе с инструментом, соблюдает их. Не достаточно уверенно владеет инструментом.	Хорошо владеет инструментом. Знает правила техники безопасности при работе с инструментом, соблюдает их.
	Практические умения и Не может самостоятельно изготовить все детали. Детали имеют существенные дефекты. Не может самостоятельно отрегулировать модель.	с навыки Самостоятельно выполняет всю работу. Модель имеет несущественные дефекты. Самостоятельно регулирует модель.	Самостоятельно качественно выполняет модель. Умеет отрегулировать модель. Может помочь товарищу.
Участие в соревнованиях	На соревнованиях плохо выступает или не выступает вообще.	На соревновании не занял призового места, но попал в первую десятку занятых мест.	На соревнованиях занимает призовые места.

2.4. Методические материалы

Список литературы для учащихся

- 1. И.А. Ройтман, Я.В. Владимиров «Черчение. Учебное пособие для учащихся 9 класса общеобразовательных учреждений», г.Смоленск, 2000.
- 2. Герасимов А. А. Самоучитель КОМПАС-3D V9. Трехмерное проектирование Страниц: 400; Прахов А.А. Самоучитель Blender 2.7.-СПб.: БХВ-Петербург, 2016.- 400 с.
- 3. Компьютерный инжиниринг : учеб. Пособие / А. И. Боровков [и др.]. СПб. : Изд-во Политехн. Ун-та, 2012. 93 с.
- 4. Малюх В. Н. Введение в современные САПР: Курс лекций. М.: ДМК Пресс, 2010. 192 с.

Список литературы для педагога

- 1. Альтшуллер Г. С. «Изобретательство и инженерия. Найти идею»;
- 2. Иванов Г. И. «Введение в теорию решения изобретательских задач». Новосибирск:Наука, 1986.
- 3. Формулы творчества, или как научиться изобретать: Книга для учащихсяст. Классов. М.: Просвещение, 1994. 4. Диксон Дж. Проектирование систем: изобретательство, анализ и принятие решений: Пер. с англ.- М.:Мир, 1969. John R. Dixon. Design Engineering: Inventiveness, Analysis and Decision Making. McGraw-Hill Book Company. New York. St. Louis. San Francisco. Toronto. London. Sydney. 1966.
- 5. Альтшуллер Г. С., Верткин И. М. Как стать гением: Жизн. Стратегия творч. Личности. Мн: Белорусь, 1994.
- 6.Альтшуллер Г.С. Алгоритм изобретения. М: Московский рабочий, 1969. Негодаев И. А. Философия техники: учебное пособие. — Ростов-на-Дону: Центр ДГТУ, 1997;
- 7. 3D моделирование и САПР В.Н. Виноградов, А.Д. Ботвинников, И.С.Вишнепольский «Черчение. Учебник для общеобразовательных учреждений», г.Москва, «Астрель», 2009.
- 8. Аддитивные технологии Уик, Ч. Обработка металлов без снятия стружки /Ч.Уик.—М.: Изд-во «Мир», 1965
- 9. С.А.Астапчик, В.С. Голубев, А.Г. Маклаков. Лазерные технологии в машиностроении и металлообработке. Белорусская наука.
- 10.Colin E. Webb, Julian D.C. Jones. Hand book Of LaserTechnology And Applications (Справочник по лазерным технологиям и ихприменению) book 1.-2 IOP. Steen Wlliam M. Laser Material Processing. 2nd edition. Great Britain: Springer-Verlag.
- 11. Вейко В.П., Петров А.А. Опорный конспект лекций по курсу «Лазерные технологии». Раздел: Введение в лазерные технологии.— СПб: СпбГУ ИТМО, 2009 143 с

- 12. Вейко В.П., Либенсон М.Н., Червяков Г.Г., Яковлев Е.Б. Взаимодействие лазерного излучения с веществом. М.: Физматлит, 2008.
- 13. Фрезерные технологии Рябов С.А. (2006) Современные фрезерные станки и их оснастка: Учебное пособие Корытный Д.М. (1963)
- 14. Фрезы Современные тенденции развития и основы эффективной эксплуатации обрабатывающих станков с ЧПУ Чуваков А.Б. Нижний Новгород, НГТУ 2013
- 15. Пайка и работа с электронными компонентами Максимихин М. А. Пайка металлов в приборостроении. Л.: Центральное бюро технической информации, 1959;