Областное государственное бюджетное профессиональное образовательное учреждение «Димитровградский технический колледж»

Детский технопарк «Кванториум»

Рассмотрена на заседании педагогического совета Протокол № 1 от 31.08.2021

Дополнительная общеобразовательная общеразвивающая программа технической направленности

«Хайтек-цех»

Хайтек - Д

Срок реализации программы – 72 часа

Возраст обучающихся первого года обучения: 12-17 лет

Уровень программы (базовый)

Автор-разработчик: педагог дополнительного образования П.С.Бондаренко

г. Димитровград, 2021 г.

Областное государственное бюджетное профессиональное образовательное учреждение «Димитровградский технический колледж»

Детский технопарк «Кванториум»

Рассмотрена на заседании	УТВЕРЖДАЮ
педагогического совета	Директор
Протокол № 1	
от 31.08.2021	Приказ № от

Дополнительная общеобразовательная общеразвивающая программа технической направленности

«Хайтек-цех»

Хайтек - Д

Срок реализации программы – 72 часа

Возраст обучающихся первого года обучения: 12-17 лет

Уровень программы (базовый)

Автор-разработчик: педагог дополнительного образования П.С.Бондаренко

г. Димитровград, 2021 г.

Содержание дополнительной общеобразовательной общеразвивающей программы

1.	Комплекс	основных	характе	ристик	прогі	раммы
• •	TOMINICIC	OCHODIIDIA	Aupanic	pheim	mhori	Jamini

1.1. Пояснительная записка	3
1.2. Цель и задачи программы	10
1.3. Планируемые результаты освоения программы	11
1.4. Содержание программы	13
2. Комплекс организационно-педагогических условий.	
2.1. Календарно-учебный график	16
2.2. Условия реализации программы	19
2.3. Формы аттестации и критерии результативности обучения	23
2.4. Методические материалы	25
Список литературы	25

1. Комплекс основных характеристик программы

1.1.Пояснительная записка.

Дополнительная общеобразовательная общеразвивающая программа «ХАЙТЕК-ЦЕХ» предназначена для детей 12-17 лет, имеет техническую направленность и предусматривает развитие творческих способностей, формирование начальных технических ЗУН, овладение soft- и hard-компетенциями. Программа предназначена для работы в учреждениях дополнительного образования с обучающимися образовательных учреждений, желающими овладеть основами моделирования объектов из области хайтек производства.

Программа направлена на освоение обучающимися аддитивных технологий, основ моделирования и программирования, навыков работы на современном высокотехнологичном оборудовании, работы в векторном редакторе, на 3d принтере, владение лазерными технологиями, лазерной резкой и гравировкой, работы на станках с ЧПУ и паяльным оборудованием. Основными задачами в работе по программе является ориентация на максимальную самореализацию личности, личностное и профессиональное самоопределение, социализацию и адаптацию детей в обществе. На всех этапах реализации программы основной целью является создание интереса у детей техническому виду деятельности, формирование потребности в приобретении специальных знаний и навыков для подготовки к осознанному выбору профессии.

В ходе практических занятий по программе базового уровня обучающиеся получат навыки работы на высокотехнологичном оборудовании; познакомятся с теорией решения изобретательских задач, основами инженерии; выполнят работы с электронными компонентами; поймут особенности и возможности высокотехнологичного оборудования и способы его практического применения, а также определят наиболее интересные направления для дальнейшего практического изучения, в том числе основы начального технологического предпринимательства.

Дополнительная общеразвивающая программа разработана на основе специализированной методической литературы и профессионального опыта педагога. Программа реализуется с применением высокотехнологичного оборудования.

Нормативно-правовое обеспечение программы.

Программа разработана в соответствии с документами:

- 1. Федеральный закон от 29 декабря 2012 года № 273-ФЗ «Об образовании в Российской Федерации» (ст. 2, ст. 15, ст.16, ст.17, ст.75, ст. 79);
- 2. Проект Концепции развития дополнительного образования детей до 2030 года;

- 3. Приказ Минпросвещения РФ от 09.11.2018 года № 196 «Об утверждении Порядка организации и осуществления образовательной деятельности по дополнительным общеобразовательным программам»;
- 4. Приказ от 30 сентября 2020 г. N 533 «О внесении изменений в порядок организации и осуществления образовательной деятельности по дополнительным общеобразовательным программам, утвержденный приказом Министерства просвещения Российской Федерации от 9 ноября 2018 г. № 196»;
- 5. Методические рекомендации по проектированию дополнительных общеразвивающих программ № 09-3242 от 18.11.2015 года;
- 6. СП 2.4.3648-20 Санитарно-эпидемиологические требования к организациям воспитания и обучения, отдыха и оздоровления детей и молодежи;
- 7. Письмо Минобрнауки России от 28.08.2015 года № АК 2563/05 «О методических рекомендациях» (вместе с Методическими рекомендациями по организации образовательной деятельности с использованием сетевых форм реализации образовательных программ);
- 8. Приказ Министерства науки и высшего образования Российской Федерации и Министерства просвещения Российской Федерации от 05.08.2020 г. N 882/391 "Об организации и осуществлении образовательной деятельности при сетевой форме реализации образовательных программ»;
- 9. Приказ Министерства образования и науки РФ от 23.08.2017 года № 816 «Порядок применения организациями, осуществляющих образовательную деятельность электронного обучения, дистанционных образовательных технологий при реализации образовательных программ»
- 10. «Методические рекомендации от 20 марта 2020 г. по реализации образовательных программ начального общего, основного общего, среднего общего образования, образовательных программ среднего профессионального образования и дополнительных общеобразовательных программ с применением электронного обучения и дистанционных образовательных технологий»;
 - 11. Устав ОГБПОУ «ДТК»;
 - 12. Положение о детском технопарке «Кванториум».

Уровень освоения программы: базовый

Направленность (профиль) программы: техническая

Актуальность программы

Актуальность программы обусловлена тем, что в современном мире больше людей интересуются достижениями в этих областях, изобретениями, моделированием и конструированием. Поэтому одной из задач современного образования содействие является воспитанию нового поколения, отвечающего по своему уровню развития и образу жизни, современным развития общества; необходимости условиям В подготовить

высококвалифицированных специалистов в области инженерии.

Освоение инженерных технологий подразумевает получение ряда базовых компетенций, владение которыми критически необходимо для развития изобретательства, инженерии и молодёжного технологического предпринимательства.

Побуждение детей к самостоятельному поиску нового в индивидуально интересующей его области (составляющей основу творчества), вовлечение в сферу производственной деятельности, умение планировать и анализировать свою деятельность - все эти факторы являются основой при формировании готовности к саморазвитию и непрерывному образованию обучающегося.

Программа отвечает потребностям детей в техническом творчестве, ориентирована на решение личностных проблем ребенка, и соответствует социальному заказу общества в подготовке технически грамотных личностей владеющих навыками в области хайтек производства и способных создавать новые и востребованные продукты.

Новизна и отличительные особенности программы

программы обусловлена тем, что в настоящее время происходит непрерывное внедрение новых технологий в жизнь общества, происходит постоянное обновление и появление нового программного современного оборудования. Программа рассчитана на обеспечения изобретательства знакомство основами И инженерии, навыками графических платформ компьютерной графики, использования И формирование начальных знаний и навыков, необходимых для разработки и воплощения своих идей и проектов в жизнь на основе решения реальных задач (кейсов). Предлагается обучение на современном оборудовании и дальнейшее применение полученных компетенций в исследованиях и проектах.

Программа интегрирует в себе техническую направленность и практическую значимость. Изучение методов и способов обработки материалов способствует воспитанию у обучающихся интереса к технике, к машиностроительным профессиям. Это дает возможность расширить технический кругозор, творческую, конструкторскую и технологическую деятельность учащихся.

Особенность данной программы в том, что она позволяет обучающимся, прошедшим обучение в объединениях начального технического моделирования наиболее полно использовать и развить полученные знания и умения до политехнического кругозора, а также является естественным продолжением дальнейшего углубленного обучения подростков техническому творчеству, ориентированного на инженерные профессии.

Ценность программы состоит в том, что в ней уделяется большое внимание практической деятельности учащихся. Программа основана на принципах развивающего обучения, способствует повышению качества обучения, формированию алгоритмического стиля мышления и усилению

мотивации к обучению.

Основным методом изучения модуля является метод кейсов. (Кейс- это описание проблемной ситуации, понятной и близкой обучающимся, решение которой требует всестороннего изучения, поиска дополнительной информации и моделирования ситуации или объекта, с выбором наиболее подходящего). Наряду с этим, программой предусматривается проектная деятельность.

Дополнительное образование в объединении дает возможность шире познакомить и увлечь обучающихся современной техникой, может быть в виде хобби, а может это, будет их первая ступень в профессиональной деятельности.

В учебных группах дети могут удовлетворить свои желания по изготовлению того или иного изделия различной сложности. В этом им помогает педагог, который, в зависимости от требований времени, создает новые учебные программы, обеспечивает их новейшим методическим сопровождением и технологиями. Развитию технического мышления учащихся способствует включение в различные этапы занятия слесарной обработки: работе сначала ручным и электроинструментом, а затем на станках с ЧПУ с последующим обобщением результатов, решением технологических задач и заданий по созданию новых технологий обработки материалов или усовершенствование предложенной.

Педагогическая целесообразность.

Педагогическая целесообразность состоит в том, что через изучение и овладение техническими знаниями и информационными технологиями формируется инженерное мышление современного ребенка, готового к разработке и внедрению инноваций в жизнь.

В рамках базового модуля предлагается, что обучающиеся будут не просто работать на современном технологичном оборудовании, они научатся генерировать идеи по применению этого оборудования при решении конкретных задач и разработки проектов.

Программа построена на оптимальном сочетании лекционного и практического материалов, направленных на активное развитие навыков проектной работы. Проектные работы позволяют учесть интересы и особенности личности каждого обучающегося.

Проектная деятельность - реальный инструмент, который отвечает всем необходимым критериям изменения качества подготовки обучающихся, повышает мотивацию к обучению, позволяет раскрыть способности каждого в образовательном процессе. Занятия основаны на личностно-ориентированных технологиях обучения, а также системно-деятельном подходе обучения.

Основная задача педагога - привлечь детей к исследовательской и изобретательской деятельности, развить у детей навыки, которые им потребуются в проектной работе и в дальнейшем освоении программы

квантума.

Большое значение уделяется практике через кейс-технологии - это метод обучения, в основе которого лежат задачи из реальной жизни, и они направлены на развитие у детей soft- и hard-компетенций.

Кейс-технология - это техника обучения, использующая описание реальной ситуации, специально подготовленный материал с описанием конкретной проблемы, которую необходимо разрешить в составе группы.

Кейс-технологии направлены на исследовательскую или инженернопроектировочную деятельность, интегрирует в себе технологию развивающего и проектного обучения, выступают в обучении как синергетическая технология («погружение» в ситуацию, «умножение» знаний, «озарение», «открытие»), позволяют создать ситуацию успеха.

Адресат программы: дети в возрасте от 12 до 17 лет.

Характеристика возрастной группы.

Программа рассчитана на широкий возрастной диапазон обучающихся: 12-17 лет. Подростковый период отличается выходом ребенка на качественно новую социальную позицию, в которой формируется его сознательное отношение к себе как члену общества. Основной формой самопознания подростка является сравнение себя с другими людьми — взрослыми, сверстниками. Поведение подростка регулируется его самооценкой, а самооценка формируется в ходе общения с окружающими людьми. Первостепенное значение в этом возрасте приобретает общение со сверстниками.

Особое значение в этом возрасте для ребенка имеет коллектив, общественное мнение, оценка сверстниками его поступков и действий. Дети стремятся завоевать в глазах сверстников авторитет, занять достойное место в коллективе. В этом возрасте у детей проявляется стремление к самостоятельности и независимости, возникает интерес к собственной личности, формируется самооценка, развиваются абстрактные формы мышления. Общаясь со сверстниками, подростки активно осваивают нормы, цели, средства социального поведения, вырабатывают критерии оценки себя и других, Педагогов воспринимают через призму общественного мнения группы.

В связи с этим основная форма проведения занятий – это практические работы, в ходе которых у детей появляется возможность продемонстрировать свои индивидуальные способности и коллективные решения поставленных задач. занятия носят познавательный характер, обеспечены адаптировать демонстрационным материалом, ЧТО позволяет ИХ конкретному возрасту.

Срок освоения программы: 4 месяца

Объём программы: 72 часа

Режим занятий: 2 раза в неделю по 2 часа (академический час 40 мин).

Формы обучения и особенности организации образовательного процесса.

Приоритетным методом организации практической деятельности обучающихся является практическая работа, а на более поздних этапах проектная деятельность. Технология проектирования предусматривает: решение обучающимся или группой обучающихся определенной проблемы, использование разнообразных методов, средств обучения, интегрирование знаний, умений из различных областей науки, техники, творчества. Учебное проектирование ориентировано самостоятельную деятельность на обучающихся - индивидуальную, парную или групповую.

Программа предусматривает использование следующих форм работы: фронтальной - подача материала всему коллективу воспитанников; индивидуальной - самостоятельная работа обучающихся с оказанием педагогом помощи при возникновении затруднения, не уменьшая активности обучающегося и содействуя выработки навыков самостоятельной работы; групповой/работа в малых группах - обучающимся предоставляется возможность самостоятельно построить свою деятельность на основе принципа взаимозаменяемости, ощутить помощь со стороны друг друга, учесть возможности каждого на конкретном этапе деятельности. Всё это способствует более быстрому и качественному выполнению заданий, также можно использовать форму «межквантумного взаимодействия».

дистанционной - с применением телекоммуникационных технологий, дающих возможность обучающим освоить объём требуемой информации без непосредственного контакта с педагогом.

Особым приёмом при организации групповой формы работы является ориентирование детей на создание так называемых минигрупп или подгрупп с учётом их возраста и опыта работы. Программой предусмотрено проведение комбинированных занятий, которые состоят из теоретической и практической части.

Виды учебной деятельности

- -просмотр и обсуждение учебных фильмов, презентаций, роликов;
- -объяснение и интерпретация наблюдаемых явлений;
- -анализ проблемных учебных ситуаций;
- -построение гипотезы на основе анализа имеющихся данных;
- -проведение исследовательского эксперимента;
- -поиск необходимой информации в учебной и справочной литературе;
- -поиск необходимой информации в глобальной сети Интернет;
- -выполнение практических работ;
- -подготовка выступлений и докладов с использованием разнообразных источников информации;
- -публичное выступление.

Режим занятий утверждается основным расписанием, доводится до сведения воспитанников и их родителей/законных представителей, а также размещается на сайте детского технопарка «Кванториум».

Формирование групп обучающихся происходит по возрастному ограничению - состав группы постоянный.

Основная форма обучения - комплексные занятия.

- На этапе изучения нового материала используются формы обучения: лекции, объяснения, рассказ, демонстрация, игры, экскурсии;
- На этапе практической деятельности используются формы обучения: беседы, дискуссии, практическая работа, выставки, практические занятия; занятия-соревнования;
- На этапе освоения навыков используются творческие задания Workshop (рабочая мастерская групповая работа, где все участники активны и самостоятельны);
- На этапе проверки полученных знаний используются формы обучения: публичные выступления с демонстрацией результатов работы, дискуссии, рефлексия.

В процессе обучения по программе, используются разнообразные педагогические технологии:

- технологии развивающего обучения, направленные на общее целостное развитие личности, на основе активно-деятельного способа обучения, учитывающие закономерности развития и особенности индивидуума;
- технологии личностно-ориентированного обучения, направленные на развитие индивидуальных познавательных способностей каждого ребенка, максимальное выявление, раскрытие и использование его опыта;
- технологии дифференцированного обучения, обеспечивающие обучение каждого обучающегося на уровне его возможностей и способностей;
- технологии сотрудничества, реализующие демократизм, равенство, партнерство в отношениях педагога и обучающегося;
- проектные технологии достижение цели через детальную разработку проблемы, которая должна завершиться реальным, осязаемым практическим результатом, оформленным тем или иным образом;
- компьютерные технологии, формирующие умение работать с информацией, исследовательские умения, коммуникативные способности.

В практике выступают различные комбинации этих технологий, их элементов.

Все виды практической деятельности в программе направлены на освоение различных комбинаций технологий работы с информацией, компьютером, программным обеспечением, сопутствующей документацией и методическими материалами. Большое внимание уделяется обеспечению безопасности труда обучающихся при выполнении различных работ, в том числе по соблюдению правил электробезопасности.

Методы образовательной деятельности

При проведении занятий используются следующие методы:

- объяснительно-иллюстрационный метод обучающиеся слушают объяснения педагога и наблюдают за демонстрационным экраном или экранами компьютеров на ученических рабочих местах;
- эвристический метод обучение, ставящее целью конструирование учеником собственного смысла, целей и содержания образования, а также процесса его организации, диагностики и осознания;
- метод устного изложения, позволяющий в доступной форме донести до обучающихся сложный материал;
- метод проверки, оценки знаний и навыков, позволяющий оценить переданные педагогом материалы и, по необходимости, вовремя внести необходимые корректировки по усвоению знаний на практических занятиях;
- исследовательский метод обучения, дающий обучающимся возможность проявить себя, показать свои возможности, добиться определенных результатов;
- метод проблемного изложения материала, когда перед обучающимся ставится некая задача, позволяющая решить определенный этап процесса обучения и перейти на новую ступень обучения;
- метод закрепления и самостоятельной работы по усвоению знаний и навыков;
- диалоговый и дискуссионный метод;
- игровой метод (игра-квест на развитие внимания, памяти, воображения).

1.2. Цель и задачи программы

Цель образовательной программы: получение знаний и навыков по высокотехнологичным оборудованием, работе формирование обучающихся познавательного интереса К аддитивным технологиям, исследовательской И изобретательской деятельности, формирование способности к нестандартному мышлению и самостоятельному принятию решений, выявление обучающихся, проявляющих способность к научнотехническому творчеству.

Задачи программы:

Обучающие:

- научить проектированию в LaserWork и 3ds max и созданию 2D и 3D моделей;
- -научить практической работе на лазерном оборудовании;
- -научить практической работе на аддитивном оборудовании (3d принтер);
- -научить практической работе на станках с ЧПУ (фрезерные станки);
- -научить практической работе с ручным инструментом;
- -научить практической работе с электронными компонентами:
- -научить применять в работе теорию решения изобретательских задач и инженерии;

Развивающие:

-развивать у обучающихся чувство ответственности, внутренней инициативы, самостоятельности, тяги к самосовершенствованию;

- -развивать познавательные интересы и формировать познавательную активность;
- -развивать творческие способности обучающихся;
- -развивать алгоритмическое мышление у обучающихся;
- -формировать умение работать в команде и публично демонстрировать проект;
- -развивать навыки необходимые для проектной деятельности.

Воспитательные:

- -способствовать формированию научного мировоззрения;
- -содействовать усвоению определенного объема научных знаний.

1.3 Планируемые результаты освоения программы

Материал программы подобран с учетом формирования определенных компетенций (soft skills «гибких навыков» и hard skills «жёстких навыков»). «Гибкие навыки» (soft skills) — комплекс неспециализированных, важных надпрофессиональных навыков, которые отвечают за успешное участие в рабочем процессе, высокую производительность, являются сквозными, однако не связаны с конкретной предметной областью (Laura H. Lippman, ReneeRyberg, 2015).

«Жёсткие навыки» (hardskills) – профессиональные навыки, которым можно научить и которые можно измерить (Биккулова О., 2017).

Планируемые результаты:

Личностные:

- умение работать в команде;
- наличие высокого познавательного интереса обучающихся;
- умение ориентироваться в информационном пространстве, продуктивно использовать техническую литературу для поиска сложных решений;
- умение ставить вопросы, связанные с темой проекта, выбор наиболее эффективных решений задач в зависимости от конкретных условий;
- умение использовать критическое мышление, чтобы определять недостоверную информацию, находить несоответствие;
- проявление технического мышления, познавательной деятельности, творческой инициативы, самостоятельности;
- способность творчески решать технические задачи;
- готовность и способность применения теоретических знаний по физике, информатике для решения задач в реальном мире;
- способность правильно организовывать рабочее место и время для достижения поставленных целей.

Метапредметные:

- умение самостоятельно планировать пути достижения целей, соотносить свои действия с планируемыми результатами, осуществлять контроль своей деятельности, определять способы действий в рамках предложенных условий;
- основные универсальные умения информационного характера: постановка

и формулирование проблемы, поиск и выделение необходимой информации,

- выбор наиболее оптимальных способов решения задач в зависимости от конкретных условий.

Предметные:

- знание принципов теории решения изобретательских задач, овладение начальными базовыми навыками инженерии;
- знание и понимание принципов проектирования, основ создания и проектирования 2D и 3D моделей;
- знание и владение практическими базисными знаниями в работе на лазерном оборудовании;
- знание и владение практическими базисными знаниями в работе на аддитивном оборудовании;
- знание и владение практическими базисными знаниями в работе на станках с числовым программным управлением (фрезерные станки);
- знание и владение практическими базисными знаниями в работе с ручным инструментом;
- знание и владение практическими базисными знаниями в работе с электронными компонентами;
- умение активировать приложения виртуальной реальности, устанавливать их на устройство и тестировать;
- знание и владение основными технологиями, используемые в Хайтек цехе, их отличие, особенности и практики применения при разработке прототипов;
- знание пользовательского интерфейса профильного ПО, базовых объектов инструментария.

1.4. Содержание программы. Учебный план.

Содержание программы

№ п/п	Название раздела\темы	Количе	ство акадо	емических	Форма ат- тестации/
11, 11		Всего	Теория	Практика	контроля
1.	Модуль 1. Вводный. Основы изобретательства и инженерии	4	2	2	
1.1.	Введение в образовательную программу, техника безопасности	2	1	1	опрос
1.2.	Основы изобретательства и инженерии. Введение в тематику ТРИЗ.	2	1	1	практическая творческая работа
2.	Модуль 2.Лазерные технологии	16	4	12	
2.1.	«Лазер против материала», таблица обработки материалов. РО (риски использования) лазеров. ТБ (техника безопасности)	14	4	10	практическая творческая работа
2.2.	Защита работы	2	0	2	публичное выступление

3.	Модуль 3. Аддитивные	30	10	10	
	технологии.				
3.1.	Риски использования 3D	16	6	10	практическая
	принтеров и механической				творческая
	обработки деталей, ТБ работы с 3D				работа
	принтером. Материалы для печати				
3.2.	Среды моделирования	12	4	8	практическая
					творческая
					работа
3.3.	Защита работы	2	0	2	публичное
					выступление
4.	Модуль 4. Субтрактивные	12	5	7	
	технологии.				
4.1.	РО (риски использования)	2	1	1	практическая
	фрезерных станков с ЧПУ, ТБ				творческая
	(техника безопасности)				работа
4.2.	Эмуляция движения фрезы, виды	8	4	4	практическая
	фрез, материалы для обработки				творческая
					работа
4.3.	Защита работы	2	0	2	публичное
					выступление
5.	Модуль 5. Технология пайки	10	4	6	
	электронных компонентов.				
5.1.	РО (риски использования) пайки	2	1	1	практическая
	элементов, ТБ (техника				творческая
	безопасности)				работа
5.2.	Пайка проводов и электронных	6	2	4	практическая
	компонентов, простые				творческая
	электронные схемы				работа
5.3.	Защита проекта	2	0	2	публичное
					выступление
	ИТОГО	7 2	28	44	

Содержание программы.

Модуль 1. Вводный. Основы изобретательства и инженерии.

Тема 1. Введение в образовательную программу, техника безопасности (2 часа).

Теория - 1 час.

Инструктаж по технике безопасности. Правила техники безопасности при нахождении в детском технопарке «Кванториум», ТБ при работе со специальным оборудованием Хайтек цеха: электрофицированным и ручным слесарным инструментом.

Практика - 1 час.

Знакомство группы, самопрезентация.

Тема 2.Основы изобретательства и инженерии. Введение в тематику ТРИЗ(2 часа).

Теория - 1 час.

Знакомство c методом решения изобретательских задач, автоматизированного проектирования, методами поиска технических решений, основами проектирования. Введение в ТРИЗ, знакомство с САПР (Система автоматизированного проектирования), понятие ограничений, методы решения изобретательских задач и методов поиска технических решений. Понятие продуктивного решения, инженерных ограничений.

Практика - 1 час.

Ознакомление с техническими особенностями оборудования.

Модуль 2. Лазерные технологии.

Тема 1-7. «Лазер против материала», таблица обработки материалов. РО (риски использования) лазеров. ТБ (техника безопасности) (14 часов).

Теория - 4 часа.

История, применение лазера. Лазерный станок, принципы построения, его основные элементы и приёмы труда на нём. Техника безопасности и охраны труда при работе с лазерным станком. Устройство и приёмы работы на лазерном станке. Технологические ограничения лазерного станка. Основы 2D - моделирования. Основы материаловедения. Свойства применяемых материалов. Проектирование изделий с применением лазерных технологий.

Практика - 10 часов.

Знакомство с основами двумерного черчения и векторной графики, подготовка чертежей для работы с лазерным станком. Знакомство с программами CorelDraw, Fusion 360, КОМПАС-3D, AutoCAD и др. Изготовление простых артефактов и изделий с применением лазерных технологий

Тема 8. Защита работы (2 часа).

Практика -2 часа.

Изготовление простых артефактов и изделий с применением лазерных технологий

Модуль 3. Аддитивные технологии.

Тема 1-8. Риски использования 3D принтеров и механической обработки деталей, ТБ работы с 3D принтером. Материалы для печати (16 часов)

Теория - 6 часов.

Знакомство с техническими особенностями оборудования аддитивных технологий, классификацией 3D-принтеров, технологическим процессом 3D-печати. Создание объёмных моделей, 3D-моделирование. Особенности и инженерные ограничения аддитивных технологий. Техника безопасности при работе с аддитивным оборудованием. Технические особенности оборудования. Основы проектирования.

Практика - 10 часов.

Знакомство с трёхмерным представлением объектов и 3Dмоделированием, основами эскизного проектирования. Знакомство и работа в программе КОМПАС-3D, Blender-3D. Освоение технологического процесса 3D-печати и последующей постобработки до законченного артефакта.

Тема 9-14. Среды моделирования

Теория - 4 часа.

Среды моделирования. Знакомство с программной средой создания 3D-моделей, на основные операции создания 3D-моделей. Азы моделирования в среде 3DS MAX.

Практика - 8 часов.

Печать 3D моделей и их обработка

Тема 9. Защита работы (2 часа).

Практика -2 часа.

Изготовление 3-D моделей с помощью процесса 3D-печати

Модуль 4. Субтрактивные технологии.

Тема 1. РО (риски использования) фрезерных станков с ЧПУ, ТБ (техника безопасности) (2 часа)

Теория - 1 час.

Знакомство и техника безопасности при работе со слесарным, столярным, ручным электрофицированным инструментом, основные приёмы работы с ним. Технологические ограничения субтрактивных технологий.

Практика - 1 час.

Ознакомление с техническими особенностями оборудования.

Тема 2-5. Эмуляция движения фрезы, виды фрез, материалы для обработки (8 часов)

Теория - 4 часа.

Фрезерное оборудование, его конструкция и области применения. Знакомство с фрезерным оборудованием, с программной средой, применяемой во фрезерных станках с ЧПУ. Программное обеспечение и особенности 3D-моделирования при работе с фрезерным станком с ЧПУ.

Практика - 4 часа.

Работа на фрезерных станках с ЧПУ. Особенности технологического процесса фрезерной обработки и раскроя материалов.

Тема 6. Защита работы (2 часа).

Практика -2 часа.

Гравировка на примере изготовления законченного изделия с использованием 3D-моделей.

Модуль 5. Технология пайки электронных компонентов.

Тема 1. РО (риски использования) пайки элементов, ТБ (техника безопасности) (2 часа)

Теория - 1 час.

Знакомство с основными элементами электронных устройств. Основные электронные компоненты, применяемые в современном производстве. Виды, физические основы пайки, флюсы, припои, технология пайки, применяемое оборудование, инструменты и приспособления.

Практика - 1 час.

Ознакомление с техническими особенностями электронных устройств.

Тема 2-4. Пайка проводов и электронных компонентов, простые электронные схемы (6 часов)

Теория - 2 часа.

Области применения пайки. Техника безопасности при работе с паяльным оборудованием и пайке электронных компонентов и проводов.

Практика - 4 часа.

Технологии пайки, навыки пайки на современном паяльном оборудовании с применением различных флюсов и припоев. Пайка электронных компонентов и проводов.

Тема 5. Защита работы (2 часа).

Практика -2 часа.

Изготовление изделия методом пайки с разработкой эскиза, чертежа. Командная презентация законченного проекта.

2. Комплекс организационно-педагогических условий.

2.1. Календарно-учебный график

$N_{\underline{0}}$	Чис	Me	Время	Форма	Кол-во	Место	Тема занятия	Форма
$\Pi \setminus$	ло	сяц	занятий	занятия	часов	проведе		контроля
П						кин		
1.				Комплек	2	Хайтек	Введение в	опрос
				сное		Цех	образовательную	
							программу, техника	
							безопасности	
2.				Комплек	2	Хайтек	Основы изобретательства	практическая
				сное		Цех	и инженерии. Введение в	творческая
							тематику ТРИЗ	работа
3.				Комплек	2	Хайтек	«Лазер против материала»,	практическая
				сное		Цех	таблица обработки	творческая
							материалов. РО (риски	работа
							использования) лазеров.	
							ТБ (техника	
							безопасности).	
4.				Комплек	2	Хайтек	«Лазер против материала»,	практическая
				сное		Цех	таблица обработки	творческая
							материалов. РО (риски	работа
							использования) лазеров.	
							ТБ (техника	

				безопасности). Основные компоненты.	
5.	Комплек сное	2	Хайтек Цех	«Лазер против материала», таблица обработки материалов. РО (риски использования) лазеров. ТБ (техника безопасности). Основные компоненты и их значение.	практическая творческая работа
6.	Комплек сное	2	Хайтек Цех	«Лазер против материала», таблица обработки материалов. РО (риски использования) лазеров. ТБ (техника безопасности). Работа в Corel Draw. Интерфейс.	практическая творческая работа
7.	Комплек сное	2	Хайтек Цех	«Лазер против материала», таблица обработки материалов. РО (риски использования) лазеров. ТБ (техника безопасности). Работа в CorelDraw.Основные компоненты.	практическая творческая работа
8.	Комплек сное	2	Хайтек Цех	«Лазер против материала», таблица обработки материалов. РО (риски использования) лазеров. ТБ (техника безопасности). Работа в CorelDraw. Подготовка модели к лазерной резке и гравировки.	практическая творческая работа
9.	Комплек сное	2	Хайтек Цех	«Лазер против материала», таблица обработки материалов. РО (риски использования) лазеров. ТБ (техника безопасности). Сборка и обработка готовой детали.	практическая творческая работа
10.	Комплек	2	Хайтек Цех	Защита работы	Публичное выступление
11.	Комплек сное	2	Хайтек Цех	Риски использования 3D принтеров и механической обработки деталей, ТБ работы с 3D принтером. Материалы для печати.	практическая творческая работа
12.	Комплек сное	2	Хайтек Цех	Риски использования 3D принтеров и механической обработки деталей, ТБ работы с 3D принтером. Материалы для печати. Основные компоненты.	практическая творческая работа
13.	Комплек сное	2	Хайтек Цех	Риски использования 3D принтеров и механической обработки деталей, ТБ работы с 3D принтером. Материалы для печати. Знакомство со слайсером Cura.	практическая творческая работа

				1	1
14.	Комплек сное	2	Хайтек Цех	Риски использования 3D принтеров и механической обработки деталей, ТБ работы с 3D принтером. Материалы для печати. Настройка, подготовка к печати.	практическая творческая работа
15.	Комплек сное	2	Хайтек Цех	Риски использования 3D принтеров и механической обработки деталей, ТБ работы с 3D принтером. Материалы для печати. Зачистка, обработка модели.	практическая творческая работа
16.	Комплек сное	2	Хайтек Цех	Риски использования 3D принтеров и механической обработки деталей, ТБ работы с 3D принтером. Материалы для печати. Анализ полученной модели, коррекция.	практическая творческая работа
17.	Комплек сное	2	Хайтек Цех	Риски использования 3D принтеров и механической обработки деталей, ТБ работы с 3D принтером. Материалы для печати. Печать готовой модели.	практическая творческая работа
18.	Комплек сное	2	Хайтек Цех	Риски использования 3D принтеров и механической обработки деталей, ТБ работы с 3D принтером. Материалы для печати. Закрепление пройденного материала (Тест).	практическая творческая работа
19.	Комплек сное	2	Хайтек Цех	Среды моделирования. Знакомство с программой Компас 3D.	практическая творческая работа
20.	Комплек сное	2	Хайтек Цех	Среды моделирования. Основные элементы проектирования. Интерфейс.	практическая творческая работа
21.	Комплек сное	2	Хайтек Цех	Среды моделирования. Операции выдавливания, вырезания.	практическая творческая работа
22.	Комплек сное	2	Хайтек Цех	Среды моделирования. Посторенние простых геометрических фигур.	практическая творческая работа
23.	Комплек сное	2	Хайтек Цех	Среды моделирования. Вспомогательные линии, сплайн по точкам.	практическая творческая работа
24.	Комплек сное	2	Хайтек Цех	Среды моделирования. Сборка.	практическая творческая работа
25.	Комплек сное	2	Хайтек Цех	Защита работы	Публичное выступление
26.	Комплек сное	2	Хайтек Цех	РО (риски использования) фрезерных станков с ЧПУ, ТБ (техника безопасности).	практическая творческая работа

27.	Комплек сное	2	Хайтек Цех	Эмуляция движения фрезы, виды фрез, материалы для обработки	практическая творческая работа
28.	Комплек сное	2	Хайтек Цех	Эмуляция движения фрезы, виды фрез, материалы для обработки. Основные компоненты.	практическая творческая работа
29.	Комплек сное	2	Хайтек Цех	Эмуляция движения фрезы, виды фрез, материалы для обработки. Интерфейс программы.	практическая творческая работа
30.	Комплек сное	2	Хайтек Цех	Эмуляция движения фрезы, виды фрез, материалы для обработки. Изготовление модели.	практическая творческая работа
31.	Комплек сное	2	Хайтек Цех	Защита работы	Публичное выступление
32.	Комплек сное	2	Хайтек Цех	РО (риски использования) пайки элементов, ТБ (техника безопасности).	практическая творческая работа
33.	Комплек сное	2	Хайтек Цех	Пайка проводов и электронных компонентов, простые электронные схемы.	практическая творческая работа
34.	Комплек сное	2	Хайтек Цех	Пайка проводов и электронных компонентов, простые электронные схемы.	практическая творческая работа
35.	Комплек сное	2	Хайтек Цех	Пайка проводов и электронных компонентов, простые электронные схемы.	практическая творческая работа
36.	Комплек сное	2	Хайтек Цех	Защита работы	Публичное выступление

2.2.Условия реализации программы.

Успешность реализации программы в значительной степени зависит от уровня квалификации преподавательского состава и материально - технического обеспечения.

Требования к педагогическому составу:

- Среднее профессиональное педагогическое с техническим уклоном (техническое) или высшее педагогическое (техническое) образование по направлениям (информатика, математика, физика, администрирование информационных систем, компьютерная безопасность, радиоэлектроника).
- Опыт работы и навыки преподавания в режиме проектной деятельности.

Требования к материально - техническому обеспечению:

Основными условиями реализации программы являются наличие кабинета, отвечающего нормам охраны труда, техники безопасности, пожарной и электробезопасности, санитарным и гигиеническим требованиям, мебели (рабочий стол, стулья, рабочее место педагога), оборудование.

Материально-техническое обеспечение

Учебная аудитория для проведения практических занятий, оснащенная мебелью на 10 посадочных мест, компьютерной техникой, не менее 1 ПК на 1 учащегося. Учебное оборудование рассчитано на группу из 10 учащихся:

№ п/п	Наименование
1	Лазерный гравер Trotec Speedy-100R C60 (CO2 лазер 60 Вт) + система поддува с
	компрессором. (Компрессор для системы поддува +Рама на колесах+Ячеистый стол
	для резки (ячейка 6,4 мм либо 12,7 мм))
2	Вращатель для гравировки цилиндрических изделий с конусами Speedy-100R
3	AtmosCube
4	3D принтер Nobel 1.0 XYZprinting (XYZ)
5	3D принтер Raise3D Pro2
6	3D принтер Hercules Strong DUO
7	Ручной 3D сканер EinScanPro 2X
8	3D принтер Wanhao Duplicator 6 Plus
9	Фрезерный станок ROLAND MODELA MDX-50
10	ZS-FS - 4 IIIT
	ZS-SCR - 3 шт
	ZS-SC - 3 IIIT
11	ZC-20-30, 3мм цанга для SRM-20
12	ZCL-50 (поворотная ось к MDX-50)
13	SRM-20, фрезерный станок Roland серии monoFab
14	ТОКАРНЫЙ СТАНОК ПО МЕТАЛЛУ 230 В JET BD-8VS
15	НАСТОЛЬНЫЙ СВЕРЛИЛЬНЫЙ СТАНОК JET JDP-8BM
16	Metabo 627154000
17	Сверлильный станок ДИОЛД СВС-500/50 20010021
18	СВЕРЛИЛЬНЫЙ СТАНОК 400 В JET JDP-15В
19	Сверлильные тиски WILTON Q75 75x80 мм WI91193RU
20	Заточной станок TRIOD UTG-25 123020
21	СТАНОК ЗАТОЧНОЙ С ВОДЯНЫМ ОХЛАЖДЕНИЕМ JET JSSG-10
22	Точило Bosch GBG 35-15 060127A300
23	Тиски слесарные 100 мм GV-STM04
24	Набор ручного механического инструмента
25	Набор электроинструмента
26	Набор расходных материалов (фанера, ABS/PLAПластики, оргстекло)

Использование оборудования

No॒	.1.	Тема занятия	Место	Наименование используемого	Расходные
$\Pi \backslash \Pi$	Колв		провед	оборудования	материалы
	K		ения		
1	2	Введение в	Хайтек	Ознакомление с оборудованием	
		образовательную	Цех	лаборатории Хайтек	
		программу, техника			
		безопасности			
2	2	Основы	Хайтек	Ознакомление с оборудованием	
		изобретательства и	Цех	лаборатории Хайтек	
		инженерии.			

		Введение в тематику ТРИЗ			
3	14	«Лазер против материала», таблица обработки материалов. РО (риски использования) лазеров. ТБ (техника безопасности)	Хайтек Цех	Лазерный гравер Trotec Speedy-100R C60 (CO2 лазер 60 Bт) + система поддува с компрессором. (Компрессор для системы поддува +Рама на колесах+Ячеистый стол для резки (ячейка 6,4 мм либо 12,7 мм)) Вращатель для гравировки цилиндрических изделий с конусами Speedy-100R; Atmos Cube	фанера, двухслойный пластик, оргстекло
4	2	Защита работы	Хайтек Цех	Лазерный гравер Trotec Speedy-100R C60 (CO2 лазер 60 Bt) + система поддува с компрессором. (Компрессор для системы поддува +Рама на колесах+Ячеистый стол для резки (ячейка 6,4 мм либо 12,7 мм)) Вращатель для гравировки цилиндрических изделий с конусами Speedy-100R; Atmos Cube	фанера, двухслойный пластик, оргстекло
5	16	Риски использования 3D принтеров и механической обработки деталей, ТБ работы с 3D принтером. Материалы для печати	Хайтек Цех	3D принтер Raise3D Pro2 3D принтер Hercules Strong DUO 3D принтерWanhao Duplicator 6 Plus Фрезерный станок ROLAND MODELA MDX-50	АВЅ/РLАПла стики, модельный пластик
6	12	Среды моделирования	Хайтек Цех	3D принтер Raise3D Pro2 3D принтер Hercules Strong DUO 3D принтерWanhao Duplicator 6 Plus Фрезерный станокROLANDMODELAMDX-50	АВЅ/РLАПла стики, модельный пластик, фанера, оргстекло
7	2	Защита работы	Хайтек Цех	3D принтер Raise3D Pro2 3D принтер Hercules Strong DUO 3D принтерWanhao Duplicator 6 Plus Фрезерный станокROLANDMODELAMDX-50	АВЅ/РЬАПла стики, модельный пластик фанера, оргстекло
8	2	РО (риски использования) фрезерных станков с ЧПУ, ТБ (техника безопасности)	Хайтек Цех	НАСТОЛЬНЫЙ СВЕРЛИЛЬНЫЙ СТАНОК ЈЕТ ЈDР-8ВМ; Метаво 627154000 Сверлильный станок ДИОЛД СВС-500/50 20010021 СВЕРЛИЛЬНЫЙ СТАНОК 400 В ЈЕТ ЈDР-15В Сверлильные тиски WILTON Q75 75х80 мм WI91193RU Заточной станок TRIOD UTG-25 123020 СТАНОК ЗАТОЧНОЙ С ВОДЯНЫМ ОХЛАЖДЕНИЕМ ЈЕТ JSSG-10	фанера, двухслойный пластик, оргстекло

		T	I	T D 1 CD C A# 4# 0 *** 1 *** 1 ***	<u> </u>
				Точило Bosch GBG 35-15 060127A300	
				Тиски слесарные 100 мм GV-STM04	
				Набор электроинструмента	
				Набор ручного механического	
				инструмента	
9	8	Эмуляция движения	Хайтек	Фрезерный станок ROLAND MODELA	Модельный
		фрезы, виды фрез,	Цех	MDX-50	ластик,
		материалы для		ZS-FS, ZS-SCR, ZS-SC	фанера
		обработки		ZC-20-30, 3мм цанга для SRM-20,	
				ZCL-50 (поворотная ось к MDX-50);	
				SRM-20, фрезерный станок Roland	
1.0				серии monoFab	
10	2	Защита работы	Хайтек	НАСТОЛЬНЫЙ СВЕРЛИЛЬНЫЙ	фанера,
			Цех	CTAHOK JET JDP-8BM;	двухслойный
				Metabo 627154000	пластик,
				Сверлильный станок ДИОЛД СВС-	оргстекло
				500/50 20010021	
				СВЕРЛИЛЬНЫЙ СТАНОК 400 В ЈЕТ	
				JDP-15B	
				Сверлильные тиски WILTON Q75 75x80	
				MM WI91193RU	
				Заточной станок TRIOD UTG-25 123020	
				СТАНОК ЗАТОЧНОЙ С ВОДЯНЫМ	
				OXЛАЖДЕНИЕМ JET JSSG-10	
				Точило Bosch GBG 35-15 060127A300	
				Тиски слесарные 100 мм GV-STM04	
				Набор электроинструмента	
				Набор ручного механического	
				инструмента	
				Фрезерный станок ROLAND MODELA	
				MDX-50	
				ZS-FS, ZS-SCR, ZS-SC	
				ZC-20-30, 3мм цанга для SRM-20,	
				ZCL-50 (поворотная ось к MDX-50);	
				SRM-20, фрезерный станок Roland	
1.1	2	DO (Vayare	серии monoFab	Пиополо
11	2	РО (риски	Хайтек	Паяльная станция Megeon.	Провода,
		использования)	Цех		припой,
		пайки элементов, ТБ			кислота.
		(техника			
12		безопасности)	Vay	Подпумод отомучуст Моссос	Пеорожа
12	6	Пайка проводов и	Хайтек	Паяльная станция Megeon.	Провода,
		электронных	Цех		припой,
		компонентов,			кислота.
		простые			
12		электронные схемы	V . ¥	Поличил Молон	Парат
13	2	Защита работы.	Хайтек	Паяльная станция Megeon.	Провода,
		Подготовка	Цех		припой,
		презентации проекта			кислота.

Состав группы

Группа обучающихся состоит из **10 человек**. Данное количество обусловлено спецификой образовательного процесса.

К работе в объединении дети приступают после проведения руководителями соответствующего инструктажа по правилам техники безопасной работы с инструментом, приспособлениями и используемым оборудованием.

2.3. Формы аттестации и критерии результативности обучения.

Формы аттестации

Процесс обучения по дополнительной общеобразовательной общеразвивающей программе предусматривает следующие формы диагностики и аттестации:

- 1. **Входная диагностика**, проводится перед началом обучения и предназначена для выявления уровня подготовленности детей к усвоению программы. Формы контроля: **беседа**, **опрос**, **тестирование**.
- 2. Итоговая диагностика проводится после завершения всей учебной программы. Формы контроля: презентация проекта, защита проекта.

Для отслеживания результативности реализации образовательной программы разработана система мониторингового сопровождения (текущий контроль: практические задания, формулировка идей, презентация идей) образовательного процесса для определения основных формируемых у детей посредством реализации программы компетентностей: предметных, социальных и коммуникативных.

Способ оценки, как правило, устный. Отмечаются недостатки выполненных работ в лёгкой форме. Основной акцент делается на её достоинства, чтобы не отбить у ребёнка желание обучаться и нацелить на исправление недостатков.

Формы подведения итогов обучения:

- индивидуальная устная/письменная проверка;
- фронтальный опрос, беседа;
- контрольные упражнения и тестовые задания;
- предъявление рабочей модели (механизма, конструкции, программы идр.);
- защита проекта;
- межгрупповые соревнования;
- проведение промежуточного и итогового тестирования;
- взаимооценка обучающимися работ друг друга.

Итоговая оценка развития личностных качеств обучающегося производится по трём уровням: «высокий», «средний» и «низкий».

Итоговая аттестация обучающихся проводится по результатам подготовки и защиты проекта (в разных формах), публичного выступления, выставки-презентации, анализа посещаемости занятий, активности участия в

программе по формированию общекультурных компетенций, результатам участия в конкурсах, соревнованиях и т.д.

Итоговая аттестация в форме выполнения и публичной защиты проекта. Проектная технология, как технология подготовки и проведения инновационный итоговой аттестации носит характер, выполняет интегрирующую функцию, объединяет все модули (темы), направленные на достижение обучающих результатов программы. Публичная защита проекта проводится в рамках семинарских и практических занятий. выступления 10 минут. В ходе выступления возможно использование электронной презентации других дополнительных И наглядных (пояснительных) и раздаточных материалов. По завершению выступления, обучающиеся отвечают на вопросы преподавателя и слушателей. Ответы на вопросы должны быть краткими и касаться только сути заданного вопроса.

Критерии оценки результативности обучения:

Параметры диагностики	Низкий уровень (изменения не замечены)	Средний уровень (изменения произошли, но обучающийся потенциально был способен к большему)	Высокий уровень (положительные изменения личностного качества обучающегося в течение обучения признаются как максимально возможные для него)			
	Плохо владеет	Владеет основными	Свободно владеет			
	понятиями по	понятиями по	понятиями по			
	пройденным темам,	пройденным темам,	пройденным темам,			
Теоретическая	не может объяснить,	применяет их на	применяет их на практике,			
подготовка	киткноп ите оти	практике. Не всегда	объясняет значение этих			
	обозначают, не	может объяснить	понятий.			
	применяет их на	значение этих				
	практике.	понятий.				
Практическая	Владение инструментом					
подготовка	Плохо владеет инструментом, не знает правила техники безопасности при работе с инструментом.	Знает правила техники безопасности при работе с инструментом, соблюдает их. Не достаточно уверенно владеет инструментом.	Хорошо владеет инструментом. Знает правила техники безопасности при работе с инструментом, соблюдает их.			
	Практические умения и навыки					
	Не может самостоятельно изготовить все детали. Детали имеют существенные дефекты. Не может самостоятельно отрегулировать модель.	Самостоятельно выполняет всю работу. Модель имеет несущественные дефекты. Самостоятельно регулирует модель.	Самостоятельно качественно выполняет модель. Умеет отрегулировать модель. Может помочь товарищу.			

Участие в	На соревнованиях	На соревновании не	На соревнованиях
соревнованиях	плохо выступает или	занял призового	занимает призовые места.
	не выступает вообще.	места, но попал в	
		первую десятку	
		занятых мест.	

2.4. Методические материалы

Список литературы

- 1.Об образовании [Электронный ресурс] :федер. закон : принят Гос. Думой 21 дек. 2012 г.: одобр. Советом Федерации 26 дек. 2012 г. № 273-ФЗ (ред. от 03.08.2018 г.) / КонсультантПлюс. Электрон, дан. Москва. 1992- . Режим доступа: http://Avw\\ .con.sultant.ru. 24.09.2019 г. Загл. с экрана.
- 2.Об утверждении СанПиН 2.4.4.3172-14 "Санитарно- эпидемиологические требования к устройству, содержанию и организации режима работы образовательных организаций дополнительного образования детей (вместе с 2.4.4.3172-14. Санитарно-эпидемиологические правила нормативы...") [Электронный pecypc] постановление Главного государственного санитарного врача РΦ 04.07.2014 $N_{\underline{0}}$ 41 (Зарегистрировано В Минюсте России 20.08.2014 33660) КонсультантПлюс. - Электрон, дан. - Москва. 1992— . — Режим доступа: <u>http://Av\vu .consultant.ru</u>. - 24.09.2019 г. - Загл. с экрана.
- 3.Об утверждении Концепции развития дополнительного образования детей [Электронный ресурс] : распоряжение Правительства РФ от 04.09.2014 № 1726-р / КонсультантПлюс. Электрон, дан. Москва. 1992— . Режим доступа: http://vvvv.consultant.ru. 24.09.2019 г. Загл. с экрана.
- утверждении 4.Об методических рекомендаций созданию И функционированию "Кванториум" детских технопарков (вместе "Методическими рекомендациями по созданию и функционированию детских технопарков "Кванториум" в рамках реализации федерального проекта "Успех каждого ребенка" национального проекта "Образование") » [Электронный ресурс]: распоряжение Минпросвещения России от 01.03.2019 № Р-27 " / КонсультантПлюс. - Электрон, дан. - Москва. 1992- . - Режим доступа: hUp^/www.consultant.ru. - 24.09.2019 г. - Загл. с экрана.
- 5.Об утверждении плана мероприятий на 2015—2020 годы по реализации Концепции развития дополнительного образования детей, утв. распоряжением Правительства РФ от 04.09.2014 № 1726-р [Электронный ресурс] : распоряжение Правительства РФ от 24.04.2015 № 729-р (ред. от 28.01.2017) / КонсультаптПлюс. Электрон, дан. Москва, 1992- . Режим доступа: http://mvw.consulianl.ru. 24.09.2019 г. Загл. с экрана.
- 6. Стратегия развития воспитания в Российской Федерации на период до 2025 года: утверждена распоряжением Правительства РФ от 29 мая 2015 г. № 996-р // Юридический журнал директора школы. 2015. № 6.-С. 4-10.
- 7.Об утверждении Порядка организации и осуществления образовательной деятельности по дополнительным общеобразовательным программам" [Электронный ресурс] : приказ Минпросвещения России от 09.11.2018 № 196

- (зарегистрировано в Минюсте России 29.11.2018 № 52831) / КонсультантПлюс. Электрон, дан. Москва, 1992- . Режим доступа: http://v\\\v.consultant.ru. 24.09.2019 г. Загл. с экрана.
- 8.О направлении информации" (вместе с "Методическими рекомендациями по проектированию дополнительных общеразвивающих программ (включая разноуровневые программы)") [Электронный ресурс] : письмо Минобрнауки России от 18.11.2015 № 09-3242 / КонсультантПлюс. Электрон, дан. Москва, 1992- . Режим доступа: http://www.consultant.iu. 24.09.2019 г.-Загл. с экрана.
- 9.О Примерных требованиях к программам дополнительного образования детей [Электронный ресурс] : письмо Минобрнауки РФ от 11.12.2006 № 06-1844 / КонсультантПлюс. Электрон, дан. Москва. 1992- . Режим доступа: http://www.consultant.ru. 24.09.2019 г. Загл. с экрана.
- 10. Савенков, А. И. Педагогика. Исследовательский подход: в 2 ч.: учеб, и практикум для академического бакалавриата / А. И. Савенков. 2-е изд., испр. и доп. Москва: Юрайт, 2017. 268 с. (Авторский учебник).
- 11.Виноградов, В. Н. Черчение : учебник для общеобразовательных учреждений / В. Н. Виноградов, А. Д. Ботвинников, И. С. Вишнепольский. Москва :Астрель, 2009. 406 с.Гайсина. С. В. Робототехника, 3D-моделирование, прототипирование: реализация современных направлений в дополнительном образовании : методические рекомендации для педагогов / С. В. Гайсина, И. В. Князева, Е. Ю. Огановская. Санкт-Петербург : КАРО. 2017. 204. [1] с. (Педагогический взгляд).
- 12. Герасимов. Л. А. Самоучитель КОМFIAC-3D V9. Трехмерное проектирование/ Л. А. Герасимов. Москва. 2016.-400 с.
- 13. Диксон. Дж. Проектирование систем: изобретательство, анализ и принятие решений / Дж. Диксон; пер. с англ. Москва: Мир, 1969. 298 с.
- 14. Компьютерный инжиниринг: учеб, пособие / А. И. Боровков [и др.]. Санкт-Петербург: Изд-во Политехи, ун-та, 2012. 93 с.
- 15. Куприков, М. Ю. Технология. Черчение. 9 класс : методическое пособие к учеб. М. Ю. Куприкова. Л. В. Маркина / М. Ю. Куприков, Л. В. Маркина. Москва : Дрофа. 2014. 126 с. (Вертикаль).
- 16. Латыпов, Н. Н. Инженерная эвристика / Н. И. Латыпов. С. В. Елкин, Д. А. Гаврилов. Москва : Астрель, 2012. 320 с., ил.
- 17. Малюх. В. Н. Введение в современные САПР : курс лекций В. Н. Малгох. Москва : ДМК Пресс, 2010. 192 с.
- 18.Огановская. Е. Ю. Робототехника. ЗЭ-моделирование и прототипирование на уроках и во внеурочной деятельности: 5-7, 8 (9) классы: [методическое пособие] / Е. Ю. Огановская, С. В. Гайсина. И. В. Князева. Санкт-Петербург: КАРО, 2017. 254. [1] с. (Педагогический взгляд).
- 19.Прахов, А. А. Самоучитель Blender 2.7. / А. А. Прахов. Санкт- Петербург : БХВ-Петербург, 2016. 400 с.
- 20.Тимирбаев, Д. Ф. Хайтек. Тулкит / Д. Ф. Тимирбаев. 2-е изд., перераб. и доп. Москва : Фонд новых форм развития образования. 2019. 76 с. (Методический инструмент наставника).

21. Чекмарев, А. А. Черчение. Справочник: учеб, пособие для прикладного бакалавриата / А. А. Чекмарев, В. К. Осипов. - 9-е изд., испр. и доп. - Москва: Юрайт, 2017. - 359 с. - (Бакалавр. Прикладной курс).

Электронные ресурсы:

КВАНТОРИУМ САХАЛИН [Электронный ресурс] : сайт. -Электрон, дан. - Южно-Сахалинск, 2017. - Режим доступа: http://kvanlorium.iioso.ru/. - 24.09.2019 г. - Загл. с экрана.